58,713 research outputs found
Microwave radiation
Physiological effects of microwave radiation on animals and humans and establishment of human tolerance limit
Improved Nearly-MDS Expander Codes
A construction of expander codes is presented with the following three
properties:
(i) the codes lie close to the Singleton bound, (ii) they can be encoded in
time complexity that is linear in their code length, and (iii) they have a
linear-time bounded-distance decoder.
By using a version of the decoder that corrects also erasures, the codes can
replace MDS outer codes in concatenated constructions, thus resulting in
linear-time encodable and decodable codes that approach the Zyablov bound or
the capacity of memoryless channels. The presented construction improves on an
earlier result by Guruswami and Indyk in that any rate and relative minimum
distance that lies below the Singleton bound is attainable for a significantly
smaller alphabet size.Comment: Part of this work was presented at the 2004 IEEE Int'l Symposium on
Information Theory (ISIT'2004), Chicago, Illinois (June 2004). This work was
submitted to IEEE Transactions on Information Theory on January 21, 2005. To
appear in IEEE Transactions on Information Theory, August 2006. 12 page
Intercontinental clock synchronization with the block 1 VLBI system
The Block 1 very long baseline interferometer (VLBI) operated by the Deep Space Network (DSN) to make weekly measurements of the relative epoch and rate offsets between the time standards in the global network of DSN stations is discussed. The precision of these measurements routinely achieves sub-microsecond levels for epoch offset and accuracies of better than one part in 10 to the 12th power for rate offset. The implementation of the phase calibrator system permits absolute measurement of epoch offset to better than 10 nanoseconds. With the near-real-time play-back and on-line storage of VLBI data, the Block 1 system typically produces clock parameters within 48 hours from the time of observation
- …
