28 research outputs found

    Homocysteine, MTHFR C677T gene polymorphism, folic acid and vitamin B 12 in patients with retinal vein occlusion

    Get PDF
    BACKGROUND: Many available data have suggested that hyperhomocysteinaemia, an established independent risk factor for thrombosis (arterial and venous), may be associated with an increased risk of retinal vein occlusion (RVO). AIM OF THE STUDY: To evaluate homocysteine metabolism in consecutive caucasian patients affected by RVO from Northern Italy. PATIENTS AND METHODS: 69 consecutive patients from Northern Italy (mean age 64.1 ± 14.6 yy) with recent RVO, were tested for plasma levels of homocysteine (tHcy: fasting and after loading with methionine), cyanocobalamine and folic acid levels (CMIA-Abbot) and looking for MTHFR C677T mutation (Light Cycler-Roche) and compared to 50 volunteers, enrolled as a control group. RESULTS: Fasting levels of tHcy were significantly higher in patients than in controls: mean value 14.7 ± 7.7 vs 10.2 ± 8 nmol/ml. Post load levels were also significantly higher: mean value 42.7 ± 23.7 vs 30.4 ± 13.3 nmol/ml; Total homocysteine increase was also evaluated (i.e. Δ-tHcy) after methionine load and was also significantly higher in patients compared to control subjects: mean Δ-tHcy 27.8 ± 21.5 vs 21.0 ± 16 nmol/ml (normal value < 25 nmol/ml). Furthermore, patients affected by RVO show low folic acid and/or vitamin B12 levels, although differences with control group did not reach statistical significance. Heterozygous and homozygous MTHFR mutation were respectively in study group 46% and 29% vs control group 56% and 4%. CONCLUSION: our data confirm that hyperhomocysteinaemia is a risk factor for RVO, and also that TT genotype of MTHFR C677T is more frequently associated with RVO: if the mutation per se is a risk factor for RVO remains an open question to be confirmed because another study from US did not reveal this aspect. Hyperomocysteinemia is modifiable risk factor for thrombotic diseases. Therefore, a screening for tHcy plasma levels in patients with recent retinal vein occlusion could allow to identify patients who might benefit from supplementation with vitamins and normalization of homocysteine levels, in fasting and after methionine load

    Mild Hypoxia Enhances Proliferation and Multipotency of Human Neural Stem Cells

    Get PDF
    Neural stem cells (NSCs) represent an optimal tool for studies and therapy of neurodegenerative diseases. We recently established a v-myc immortalized human NSC (IhNSC) line, which retains stem properties comparable to parental cells. Oxygen concentration is one of the most crucial environmental conditions for cell proliferation and differentiation both in vitro and in vivo. In the central nervous system, physiological concentrations of oxygen range from 0.55 to 8% oxygen. In particular, in the in the subventricular zone niche area, it's estimated to be 2.5 to 3%.We investigated in vitro the effects of 1, 2.5, 5, and 20% oxygen concentrations on IhNSCs both during proliferation and differentiation. The highest proliferation rate, evaluated through neurosphere formation assay, was obtained at 2.5 and 5% oxygen, while 1% oxygen was most noxious for cell survival. The differentiation assays showed that the percentages of β-tubIII+ or MAP2+ neuronal cells and of GalC+ oligodendrocytes were significantly higher at 2.5% compared with 1, 5, or 20% oxygen at 17 days in vitro. Mild hypoxia (2.5 to 5% oxygen) promoted differentiation into neuro-oligodendroglial progenitors as revealed by the higher percentage of MAP2+/Ki67+ and GalC+/Ki67+ residual proliferating progenitors, and enhanced the yield of GABAergic and slightly of glutamatergic neurons compared to 1% and 20% oxygen where a significant percentage of GFAP+/nestin+ cells were still present at 17 days of differentiation.These findings raise the possibility that reduced oxygen levels occurring in neuronal disorders like cerebral ischemia transiently lead to NSC remaining in a state of quiescence. Conversely, mild hypoxia favors NSC proliferation and neuronal and oligodendroglial differentiation, thus providing an important advance and a useful tool for NSC-mediated therapy of ischemic stroke and neurodegenerative diseases like Parkinson's disease, multiple sclerosis, and Alzheimer's disease

    Post-Transplant Cyclophosphamide and Tacrolimus–Mycophenolate Mofetil Combination Prevents Graft-versus-Host Disease in Allogeneic Peripheral Blood Hematopoietic Cell Transplantation from HLA-Matched Donors

    Get PDF
    Abstract Allogeneic hematopoietic cell transplant (HCT) remains the only curative therapy for many hematologic malignancies but it is limited by high nonrelapse mortality (NRM), primarily from unpredictable control of graft-versus-host disease (GVHD). Recently, post-transplant cyclophosphamide demonstrated improved GVHD control in allogeneic bone marrow HCT. Here we explore cyclophosphamide in allogeneic peripheral blood stem cell transplantation (alloPBSCT). Patients with high-risk hematologic malignancies received alloPBSCT from HLA-matched unrelated/related donors. GVHD prophylaxis included combination post-HCT cyclophosphamide 50 mg/kg (days +3 and +4) and tacrolimus/mofetil mycophenolate (T/MMF) (day +5 forward). The primary objective was the cumulative incidence of acute and chronic GVHD. Between March 2011 and May 2015, 35 consecutive patients received the proposed regimen. MMF was stopped in all patients at day +28; the median discontinuation of tacrolimus was day +113. Acute and chronic GVHD cumulative incidences were 17% and 7%, respectively, with no grade IV GVHD events, only 2 patients requiring chronic GVHD immunosuppression control, and no deaths from GVHD. Two-year NRM, overall survival, event-free survival, and chronic GVHD event-free survival rates were 3%, 77%, 54%, and 49%, respectively. The graft-versus-tumor effect was maintained as 5 of 15 patients (33%) who received HCT with evidence of disease experienced further disease response. A post-transplant cyclophosphamide + T/MMF combination strategy effectively prevented acute and chronic GVHD after alloPBSCT from HLA-matched donors and achieved an unprecedented low NRM without losing efficacy in disease control or impaired development of the graft-versus-tumor effect. This trial is registered at clinicaltrials.gov as NCT02300571

    Farmed fish welfare during slaughter in Italy: survey on stunning and killing methods and indicators of unconsciousness

    Get PDF
    Information on slaughter procedures for farmed fish in aquaculture is limited, both in Europe and in Italy, due to a general lack of field data. The aim of this study was to gather information on the procedures used to slaughter fish in Italy and to discuss them considering the WOAH and EFSA recommendations on fish welfare. Using a questionnaire survey, data were collected by official veterinarians in 64 slaughtering facilities where 20 different species of fish were slaughtered. The main species slaughtered were rainbow trout (Oncorhynchus mykiss; 29/64), followed by European sea bass (Dicentrarchus labrax; 21/64), sea bream (Sparus aurata; 21/64), Arctic char (Salvelinus alpinus; 14/64), European eel (Anguilla anguilla; 11/64), sturgeon (Acipenser spp; 11/64), common carp (Cyprinus carpio; 6/64), and brown trout (Salmo trutta fario L.; 5/64). The most applied stunning/killing methods were “asphyxia in ice/thermal shock” and “electric in water bath,” followed by “percussion,” “asphyxia in air,” and “electric dry system.” After the application of the method, the assessment of the fish level of unconsciousness was practiced in 72% of the facilities using more than one indicator, with “breathing” and “coordinated movements” the most practiced. The collected data showed a discrepancy between the available recommendations about the welfare of fish at slaughter and what is practiced in many production sites, but for many species precise recommendations are still not available

    Long-Term Survival of Human Neural Stem Cells in the Ischemic Rat Brain upon Transient Immunosuppression

    Get PDF
    Understanding the physiology of human neural stem cells (hNSCs) in the context of cell therapy for neurodegenerative disorders is of paramount importance, yet large-scale studies are hampered by the slow-expansion rate of these cells. To overcome this issue, we previously established immortal, non-transformed, telencephalic-diencephalic hNSCs (IhNSCs) from the fetal brain. Here, we investigated the fate of these IhNSC's immediate progeny (i.e. neural progenitors; IhNSC-Ps) upon unilateral implantation into the corpus callosum or the hippocampal fissure of adult rat brain, 3 days after global ischemic injury. One month after grafting, approximately one fifth of the IhNSC-Ps had survived and migrated through the corpus callosum, into the cortex or throughout the dentate gyrus of the hippocampus. By the fourth month, they had reached the ipsilateral subventricular zone, CA1-3 hippocampal layers and the controlateral hemisphere. Notably, these results could be accomplished using transient immunosuppression, i.e administering cyclosporine for 15 days following the ischemic event. Furthermore, a concomitant reduction of reactive microglia (Iba1+ cells) and of glial, GFAP+ cells was also observed in the ipsilateral hemisphere as compared to the controlateral one. IhNSC-Ps were not tumorigenic and, upon in vivo engraftment, underwent differentiation into GFAP+ astrocytes, and β-tubulinIII+ or MAP2+ neurons, which displayed GABAergic and GLUTAmatergic markers. Electron microscopy analysis pointed to the formation of mature synaptic contacts between host and donor-derived neurons, showing the full maturation of the IhNSC-P-derived neurons and their likely functional integration into the host tissue. Thus, IhNSC-Ps possess long-term survival and engraftment capacity upon transplantation into the globally injured ischemic brain, into which they can integrate and mature into neurons, even under mild, transient immunosuppressive conditions. Most notably, transplanted IhNSC-P can significantly dampen the inflammatory response in the lesioned host brain. This work further supports hNSCs as a reliable and safe source of cells for transplantation therapy in neurodegenerative disorders
    corecore