93 research outputs found

    How to break the replica symmetry in structural glasses

    Full text link
    The variational principle (VP) has been used to capture the metastable states of a glass-forming molecular system without quenched disorder. It has been shown that VP naturally leads to a self-consistent random field Ginzburg-Landau model (RFGLM). In the framework of one-step replica symmetry breaking (1-RSB) the general solution of RFGLM is discussed in the vicinity of the spinodal temperature T_{A} in terms of ``hidden'' formfactors g~(k)\tilde g(k), g_{0}(k) and Δ(k)\Delta(k). The self-generated disorder spontaneously arises. It is argued that at T < T_{A} the activated dynamics is dominant.Comment: 11 pages, no figures, accepted by Europhys. Let

    Langevin dynamics of the glass forming polymer melt: fluctuations around the random phase approximation

    Full text link
    In this paper the Martin-Siggia-Rose (MSR) functional integral representation is used for the study of the Langevin dynamics of a polymer melt in terms of collective variables: mass density and response field density. The resulting generating functional (GF) takes into account fluctuations around the random phase approximation (RPA) up to an arbitrary order. The set of equations for the correlation and response functions is derived. It is generally shown that for cases whenever the fluctuation-dissipation theorem (FDT) holds we arrive at equations similar to those derived by Mori-Zwanzig. The case when FDT in the glassy phase is violated is also qualitatively considered and it is shown that this results in a smearing out of the ideal glass transition. The memory kernel is specified for the ideal glass transition as a sum of all water-melon diagrams. For the Gaussian chain model the explicit expression for the memory kernel was obtained and discussed in a qualitative link to the mode-coupling equation.Comment: 30 pages, 5 figure

    Dynamics of polymeric manifolds in melts: Hartree approximation

    Full text link
    The Martin-Siggia-Rose functional technique and the self-consistent Hartree approximation is applied to the dynamics of a D-dimensional manifold in a melt of similar manifolds.The generalized Rouse equation is derived and its static and dynamic properties are studied. The static upper critical dimension discriminate between Gaussian and non-Gaussian regimes, whereas its dynamic counterpart discriminates between Rouse- and renormalized-Rouse behavior. The dynamic exponents are calculated explicitly. The special case of linear chains shows agreement with MD- and MC-simulations.Comment: 4 pages,1 figures, accepted by EPJB as a Rapid Not

    Dynamics of a polymer test chain in a glass forming matrix: The Hartree Approximation

    Get PDF
    In this paper the Martin-Siggia-Rose formalism is used to derive a generalized Rouse equation for a test chain in a matrix which can undergo the glass transition. It is shown that the surrounding matrix renormalizes the static properties of the test chain. Furthermore the freezing of the different Rouse modes is investigated. This yields freezing temperatures which depend from the Rouse mode index.Comment: to be published in Journal de Physique I

    Weak violation of universality for Polyelectrolyte Chains: Variational Theory and Simulations

    Full text link
    A variational approach is considered to calculate the free energy and the conformational properties of a polyelectrolyte chain in dd dimensions. We consider in detail the case of pure Coulombic interactions between the monomers, when screening is not present, in order to compute the end-to-end distance and the asymptotic properties of the chain as a function of the polymer chain length NN. We find RNν(logN)γR \simeq N^{\nu}(\log N)^{\gamma} where ν=3λ+2\nu = \frac{3}{\lambda+2} and λ\lambda is the exponent which characterize the long-range interaction U1/rλU \propto 1/r^{\lambda}. The exponent γ\gamma is shown to be non-universal, depending on the strength of the Coulomb interaction. We check our findings, by a direct numerical minimization of the variational energy for chains of increasing size 24<N<2152^4<N<2^{15}. The electrostatic blob picture, expected for small enough values of the interaction strength, is quantitatively described by the variational approach. We perform a Monte Carlo simulation for chains of length 24<N<2102^4<N<2^{10}. The non universal behavior of the exponent γ \gamma previously derived within the variational method, is also confirmed by the simulation results. Non-universal behavior is found for a polyelectrolyte chain in d=3d=3 dimension. Particular attention is devoted to the homopolymer chain problem, when short range contact interactions are present.Comment: to appear in European Phys. Journal E (soft matter

    Detachment of semiflexible polymer chains from a substrate - a Molecular Dynamics investigation

    Full text link
    Using Molecular Dynamics simulations, we study the force-induced detachment of a coarse-grained model polymer chain from an adhesive substrate. One of the chain ends is thereby pulled at constant speed off the attractive substrate and the resulting saw-tooth profile of the measured mean force vs height $D$ of the end-segment over the plane is analyzed for a broad variety of parameters. It is shown that the observed characteristic oscillations in the $< f >$-$D$ profile depend on the bending and not on the torsional stiffness of the detached chains. Allowing for the presence of hydrodynamic interactions (HI) in a setup with explicit solvent and DPD-thermostat, rather than the case of Langevin thermostat, one finds that HI have little effect on the -DD profile. Also the change of substrate affinity with respect to the solvent from solvophilic to solvophobic is found to play negligible role in the desorption process. In contrast, a changing ratio ϵsA/ϵsB\epsilon_s^A / \epsilon_s^B of the binding energies of AA- and BB-segments in the detachment of an ABAB-copolymer from adhesive surface strongly changes the -DD profile whereby the BB-spikes vanish when ϵsA/ϵsB<0.15\epsilon_s^A / \epsilon_s^B < 0.15. Eventually, performing an atomistic simulation of a (bio)-polymer {\it polyglycine}, we demonstrate that the simulation results, derived from our coarse-grained model, comply favorably with those from the all-atom simulation.Comment: Latex, 12 pages, 8 figures, to appear in JC

    The Hartree approximation in dynamics of polymeric manifolds in the melt

    Full text link
    The Martin-Siggia-Rose (MSR) functional integral technique is applied to the dynamics of a D - dimensional manifold in a melt of similar manifolds. The integration over the collective variables of the melt can be simply implemented in the framework of the dynamical random phase approximation (RPA). The resulting effective action functional of the test manifold is treated by making use of the selfconsistent Hartree approximation. As an outcome the generalized Rouse equation (GRE) of the test manifold is derived and its static and dynamic properties are studied. It was found that the static upper critical dimension, duc=2D/(2D)d_{\rm uc}=2D/(2-D), discriminates between Gaussian (or screened) and non-Gaussian regimes, whereas its dynamical counterpart, d~uc=2duc{\tilde d}_{uc}=2d_{\rm uc}, distinguishes between the simple Rouse and the renormalized Rouse behavior. We have argued that the Rouse mode correlation function has a stretched exponential form. The subdiffusional exponents for this regime are calculated explicitly. The special case of linear chains, D=1, shows good agreement with MD- and MC-simulations.Comment: 35 pages,3 figures, accepted by J.Chem.Phy

    Driven translocation of a polymer: role of pore friction and crowding

    Full text link
    Force-driven translocation of a macromolecule through a nanopore is investigated by taking into account the monomer-pore friction as well as the "crowding" of monomers on the {\it trans} - side of the membrane which counterbalance the driving force acting in the pore. The set of governing differential-algebraic equations for the translocation dynamics is derived and solved numerically. The analysis of this solution shows that the crowding of monomers on the trans side hardly affects the dynamics, but the monomer-pore friction can substantially slow down the translocation process. Moreover, the translocation exponent α\alpha in the translocation time - vs. - chain length scaling law, τNα\tau \propto N^{\alpha}, becomes smaller when monomer-pore friction coefficient increases. This is most noticeable for relatively strong forces. Our findings may explain the variety of α\alpha values which were found in experiments and computer simulations.Comment: 12 page

    Kinetics of copolymer localization at a selective liquid-liquid interface

    Full text link
    The localization kinetics of a regular block-copolymer of total length NN and block size MM at a selective liquid-liquid interface is studied in the limit of strong segregation between hydrophobic and polar segments in the chain. We propose a simple analytic theory based on scaling arguments which describes the relaxation of the initial coil into a flat-shaped layer for the cases of both Rouse and Zimm dynamics. For Rouse dynamics the characteristic times for attaining equilibrium values of the gyration radius components perpendicular and parallel to the interface are predicted to scale with block length MM and chain length NN as τM1+2ν\tau_{\perp} \propto M^{1+2\nu} (here ν0.6\nu\approx 0.6 is the Flory exponent) and as τN2\tau_{\parallel} \propto N^2, although initially the characteristic coil flattening time is predicted to scale with block size as M\propto M. Since typically NMN\gg M for multiblock copolymers, our results suggest that the flattening dynamics proceeds faster perpendicular rather than parallel to the interface, in contrast to the case of Zimm dynamics where the two components relax with comparable rate, and proceed considerably slower than in the Rouse case. We also demonstrate that, in the case of Rouse dynamics, these scaling predictions agree well with the results of Monte Carlo simulations of the localization dynamics. A comparison to the localization dynamics of {\em random} copolymers is also carried out.Comment: 11 pages, 15 figure
    corecore