36 research outputs found

    Impedance Matched Absorptive Thermal Blocking Filters

    Get PDF
    We have designed, fabricated and characterized absorptive thermal blocking filters for cryogenic microwave applications. The transmission line filter's input characteristic impedance is designed to match 50 Ω50\,\Omega and its response has been validated from 0-to-50\,GHz. The observed return loss in the 0-to-20\,GHz design band is greater than 20 20\,dB and shows graceful degradation with frequency. Design considerations and equations are provided that enable this approach to be scaled and modified for use in other applications

    Recovery of Large Angular Scale CMB Polarization for Instruments Employing Variable-delay Polarization Modulators

    Full text link
    Variable-delay Polarization Modulators (VPMs) are currently being implemented in experiments designed to measure the polarization of the cosmic microwave background on large angular scales because of their capability for providing rapid, front-end polarization modulation and control over systematic errors. Despite the advantages provided by the VPM, it is important to identify and mitigate any time-varying effects that leak into the synchronously modulated component of the signal. In this paper, the effect of emission from a 300300 K VPM on the system performance is considered and addressed. Though instrument design can greatly reduce the influence of modulated VPM emission, some residual modulated signal is expected. VPM emission is treated in the presence of rotational misalignments and temperature variation. Simulations of time-ordered data are used to evaluate the effect of these residual errors on the power spectrum. The analysis and modeling in this paper guides experimentalists on the critical aspects of observations using VPMs as front-end modulators. By implementing the characterizations and controls as described, front-end VPM modulation can be very powerful for mitigating 1/f1/f noise in large angular scale polarimetric surveys. None of the systematic errors studied fundamentally limit the detection and characterization of B-modes on large scales for a tensor-to-scalar ratio of r=0.01r=0.01. Indeed, r<0.01r<0.01 is achievable with commensurately improved characterizations and controls.Comment: 13 pages, 13 figures, 1 table, matches published versio

    On-sky performance of new 90 GHz detectors for the Cosmology Large Angular Scale Surveyor (CLASS)

    Full text link
    The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert and designed to measure the polarized Cosmic Microwave Background (CMB) over large angular scales. The CLASS array is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (HF). During the austral winter of 2022, we upgraded the first 90 GHz telescope (W1) by replacing four of the seven focal plane modules. These new modules contain detector wafers with an updated design, aimed at improving the optical efficiency and detector stability. We present a description of the design changes and measurements of on-sky optical efficiencies derived from observations of Jupiter.Comment: 5 pages, 3 figures, to appear in the IEEE Transactions on Applied Superconductivity. arXiv admin note: text overlap with arXiv:2208.0500

    Fabrication of Silicon Backshort Assembly for Waveguide-Coupled Superconducting Detectors

    Get PDF
    The Cosmology Large Angular Scale Surveyor (CLASS) is a ground-based instrument that will measure the polarization of the cosmic microwave background to search for gravitational waves from a posited epoch of inflation early in the universe s history. We are currently developing detectors that address the challenges of this measurement by combining the excellent beam-forming attributes of feedhorns with the low-noise performance of Transition-Edge sensors. These detectors utilize a planar orthomode transducer that maps the horizontal and vertical linear polarized components in a dual-mode waveguide to separate microstrip lines. On-chip filters define the bandpass in each channel, and the signals are terminated in resistors that are thermally coupled to the transition-edge sensors operating at 150 mK

    Microwave Observations of Venus with CLASS

    Full text link
    We report on the disk-averaged absolute brightness temperatures of Venus measured at four microwave frequency bands with the Cosmology Large Angular Scale Surveyor (CLASS). We measure temperatures of 432.3 ±\pm 2.8 K, 355.6 ±\pm 1.3 K, 317.9 ±\pm 1.7 K, and 294.7 ±\pm 1.9 K for frequency bands centered at 38.8, 93.7, 147.9, and 217.5 GHz, respectively. We do not observe any dependence of the measured brightness temperatures on solar illumination for all four frequency bands. A joint analysis of our measurements with lower frequency Very Large Array (VLA) observations suggests relatively warmer (∼\sim 7 K higher) mean atmospheric temperatures and lower abundances of microwave continuum absorbers than those inferred from prior radio occultation measurements.Comment: 10 pages, 3 figures, published in PS

    Fabrication of Feedhorn-Coupled Transition Edge Sensor Arrays for Measurement of the Cosmic Microwave Background Polarization

    Get PDF
    Characterization of the minute cosmic microwave background (CMB) polarization signature requires multi-frequency high-throughput precision instrument systems. We have previously described the detector fabrication of a 40 gigahertz focal plane and now describe the fabrication of a 37-element dual-polarization detector module for measurement of the CMB at 90 gigahertz. The 72-TES (Transition Edge Sensor)-based bolometers in each module are coupled to a niobium-based planar orthomode transducer with integrated band defining filters implemented in microstrip transmission line. A single crystal silicon dielectric substrate serves as microstrip dielectric and as a thermal link between the membrane isolated MoAu TES operating at 150 millikelvins and the heat bath. A short silicon leg between the heat bath and the TES bolometer is designed for ballistic phonon transport and provides improved process control and uniformity of thermal conductance in the presence of phonon scattering on roughened surfaces. Micro-machined structures are used to realize the orthomode transducer backshort, provide out of band signal rejection, and a silicon photonic choke for feedhorn coupling are described. The backshort, choke wafer, and detector wafer are indium bump-bonded to create a single 37-element dual-polarization detector module. Fourteen such hexagonally shaped modules each 80 millimeters in size comprise two focal planes. These, along with the recently delivered 40 gigahertz focal plane, will survey a large fraction of the sky as part of the Johns Hopkins University-led ground-based CLASS (Cosmology Large Angular Scale Surveyor) telescope

    CLASS Angular Power Spectra and Map-Component Analysis for 40 GHz Observations through 2022

    Full text link
    Measurement of the largest angular scale (ℓ<30\ell < 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization, τ\tau, and search for the signature of inflation through the detection of primordial BB-modes. We present an analysis of maps covering nearly 75% of the sky made from the ground-based 40 GHz40\,\mathrm{GHz} channel of the Cosmology Large Angular Scale Surveyor (CLASS) from August 2016 to May 2022. Using fast front-end polarization modulation from the Atacama Desert in Chile, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10<ℓ<10010 < \ell < 100. After a final calibration adjustment, noise simulations show the CLASS linear (circular) polarization maps have a white noise level of 125 (130) μK arcmin125 \,(130)\,\mathrm{\mu K\, arcmin}. We measure the Galaxy-masked EEEE and BBBB spectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new regions of the sky and measure the faint diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5<ℓ<1255 < \ell < 125 with the first bin showing Dℓ<0.023D_\ell < 0.023 μKCMB2\mathrm{\mu K^2_{CMB}} at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher frequency CLASS channels are included in the analysis.Comment: 36 pages, 24 figures, 6 tables. Submitted to The Astrophysical Journa
    corecore