27 research outputs found

    Comparison of feature extraction from wavelet packet based on reconstructed signals versus wavelet packet coefficients for fault diagnosis of rotating machinery

    Get PDF
    Vibration signals from rotating machines are usually nonlinear and nonstationary. Time frequency techniques are suitable for analyzing this type of signals. Wavelet analysis is one of the most powerful methods in this regards. Therefore, wavelet analysis is used extensively for diagnosis of nonlinear and nonstationary signals. Faults in rotating machines show their effects in certain frequency bands. In this research the features extracted from reconstructed signals from wavelet packets were compared to features extracted from wavelet packet coefficients. It is shown that reconstructed signals act better for fault diagnosis than wavelet packet coefficients. To support our claim one example is designed that justifies our hypothesis. To evaluate our hypothesis in real world practical situations, health condition monitoring of a motorcycle gearbox has been considered. In this practical situation wavelet coefficients and reconstructed signals from wavelet packet coefficients extracted from signals acquired from gearbox housing were compared. Mahalanobis distance (MD) is employed to evaluate the significance of the extracted features. It is shown that features extracted from reconstructed signals are more suitable than features extracted from wavelet packet coefficients

    HARMONIC ANALYSIS OF LEAKAGE CURRENT OF SILICON RUBBER INSULATORS IN CLEAN-FOG AND SALT-FOG

    Get PDF
    International audienceEnvironmental and electrical stresses have deterioration effects on Silicon Rubber (SIR) insulators. In coastal areas due to high amount of salt, humidity and dust suspended in the air, the deterioration process is intensive. In this paper, based on IEC 60507 the leakage current (LC) of 20kV SIR insulators has been investigated in clean-fog and salt-fog with and without artificial pollution. Tests have been executed with six similar SIR insulators. A pair of polluted and clean SIR insulators is subjected to clean-fog; other two pairs are subjected to salt-fog with 5 and 10 kg/m 3 salinity respectively. Results show that combination of pollution and salt-fog is more destructive than clean-fog, where the main reason may be the increase of conductivity. Dry band arcing makes insulator perform nonlinearly and some LC waveform harmonic growth. The Fast Fourier Transform (FFT) method, used to find the harmonic spectrum of the LC. Results, also illustrate the coordination between the 3 rd and 5 th harmonic components of the LC and insulators surface condition

    A STUDY ON THE RELATION BETWEEN LEAKAGE CURRENT AND SPECIFIC CREEPAGE DISTANCE

    Get PDF
    International audienceThe usage of polymeric insulators is common due to their advantages in comparison with porcelain insulators. Environmental and electrical stresses have got deteriorating effects on polymeric insulators. Thus, knowing about behaviour of these types of insulators under various stresses is necessary. Till now, various electrical tests have been performed on polymeric insulators to investigate their performance in different situations and to provide a solution for predicting their effective lifetime. Also some standards for testing polymeric insulators have been proposed e.g. IEC62217. In this paper, three pairs of similar 63kV and three pairs of similar 132kV polymeric insulators have been selected for studying the relation between leakage current of polymeric insulators and their specific creepage distance based on IEC62217 standard. The specimens have been tested in three different creepage distances which are proportion of overall creepage distance. The Fast Fourier Transform analysis has been used to find the harmonic spectrum of the leakage current. The results showed that the amplitude of harmonic components for 63kV insulators in all three cases is mostly equal to each other and similarly for 132kV insulators

    Entropy-based nonlinear analysis for electrophysiological recordings of brain activity in Alzheimer’s disease

    Get PDF
    Alzheimer’s disease (AD) is a neurodegenerative disorder in which the death of brain cells causes memory loss and cognitive decline. As AD progresses, changes in the electrophysiological brain activity take place. Such changes can be recorded by the electroencephalography (EEG) and magnetoencephalography (MEG) techniques. These are the only two neurophysiologic approaches able to directly measure the activity of the brain cortex. Since EEGs and MEGs are considered as the outputs of a nonlinear system (i.e., brain), there has been an interest in nonlinear methods for the analysis of EEGs and MEGs. One of the most powerful nonlinear metrics used to assess the dynamical characteristics of signals is that of entropy. The aim of this thesis is to develop entropy-based approaches for characterization of EEGs and MEGs paying close attention to AD. Recent developments in the field of entropy for the characterization of physiological signals have tried: 1) to improve the stability and reliability of entropy-based results for short and long signals; and 2) to extend the univariate entropy methods to their multivariate cases to be able to reveal the patterns across channels. To enhance the stability of entropy-based values for short univariate signals, refined composite multiscale fuzzy entropy (MFE - RCMFE) is developed. To decrease the running time and increase the stability of the existing multivariate MFE (mvMFE) while keeping its benefits, the refined composite mvMFE (RCmvMFE) with a new fuzzy membership function is developed here as well. In spite of the interesting results obtained by these improvements, fuzzy entropy (FuzEn), RCMFE, and RCmvMFE may still lead to unreliable results for short signals and are not fast enough for real-time applications. To address these shortcomings, dispersion entropy (DispEn) and frequency-based DispEn (FDispEn), which are based on our introduced dispersion patterns and the Shannon’s definition of entropy, are developed. The computational cost of DispEn and FDispEn is O(N) – where N is the signal length –, compared with the O(N2) for popular sample entropy (SampEn) and FuzEn. DispEn and FDispEn also overcome the problem of equal values for embedded vectors and discarding some information with regard to the signal amplitudes encountered in permutation entropy (PerEn). Moreover, unlike PerEn, DispEn and FDispEn are relatively insensitive to noise. As extensions of our developed DispEn, multiscale DispEn (MDE) and multivariate MDE (mvMDE) are introduced to quantify the complexity of univariate and multivariate signals, respectively. MDE and mvMDE have the following advantages over the existing univariate and multivariate multiscale methods: 1) they are noticeably faster; 2) MDE and mvMDE result in smaller coefficient of variations for synthetic and real signals showing more stable profiles; 3) they better distinguish various states of biomedical signals; 4) MDE and mvMDE do not result in undefined values for short time series; and 5) mvMDE, compared with multivariate multiscale SampEn (mvMSE) and mvMFE, needs to store a considerably smaller number of elements. In this Thesis, two restating-state electrophysiological datasets related to AD are analyzed: 1) 148-channel MEGs recorded from 62 subjects (36 AD patients vs. 26 age-matched controls); and 2) 16-channel EEGs recorded from 22 subjects (11 AD patients vs. 11 age-matched controls). The results obtained by MDE and mvMDE suggest that the controls’ signals are more and less complex at respectively short (scales between 1 to 4) and longer (scales between 5 to 12) scale factors than AD patients’ recordings for both the EEG and MEG datasets. The p-values based on Mann-Whitney U-test for AD patients vs. controls show that the MDE and mvMDE, compared with the existing complexity techniques, significantly discriminate the controls from subjects with AD at a larger number of scale factors for both the EEG and MEG datasets. Moreover, the smallest p-values are achieved by MDE (e.g., 0.0010 and 0.0181 for respectively MDE and MFE using EEG dataset) and mvMDE (e.g., 0.0086 and 0.2372 for respectively mvMDE and mvMFE using EEG dataset) for both the EEG and MEG datasets, illustrating the superiority of these developed entropy-based techniques over the state-of-the-art univariate and multivariate entropy approaches. Overall, the introduced FDispEn, DispEn, MDE, and mvMDE methods are expected to be useful for the analysis of physiological signals due to their ability to distinguish different types of time series with a low computation time

    Bearing Fault Diagnosis Using Refined Composite Generalized Multiscale Dispersion Entropy-Based Skewness and Variance and Multiclass FCM-ANFIS

    No full text
    Bearing vibration signals typically have nonlinear components due to their interaction and coupling effects, friction, damping, and nonlinear stiffness. Bearing faults affect the signal complexity at various scales. Hence, measuring signal complexity at different scales is helpful to diagnosis of bearing faults. Numerous studies have investigated multiscale algorithms; nevertheless, multiscale algorithms using the first moment lose important complexity data. Accordingly, generalized multiscale algorithms have been recently introduced. The present research examined the use of refined composite generalized multiscale dispersion entropy (RCGMDispEn) based on the second moment (variance) and third moment (skewness) along with refined composite multiscale dispersion entropy (RCMDispEn) in bearing fault diagnosis. Moreover, multiclass FCM-ANFIS, which is a combination of adaptive network-based fuzzy inference systems (ANFIS), was developed to improve the efficiency of rotating machinery fault classification. According to the results, it is recommended that generalized multiscale algorithms based on variance and skewness be examined for diagnosis, along with multiscale algorithms, and be used to achieve an improvement in the results. The simultaneous usage of the multiscale algorithm and generalized multiscale algorithms improved the results in all three real datasets used in this study

    Refined Composite Multiscale Dispersion Entropy and its Application to Biomedical Signals

    No full text
    Objective: We propose a novel complexity measure to overcome the deficiencies of the widespread and powerful multiscale entropy (MSE), including, MSE values may be undefined for short signals, and MSE is slow for real-time applications. Methods: We introduce multiscale dispersion entropy (DisEn - MDE) as a very fast and powerful method to quantify the complexity of signals. MDE is based on our recently developed DisEn, which has a computation cost of O(N), compared with O(N2) for sample entropy used in MSE. We also propose the refined composite MDE (RCMDE) to improve the stability of MDE. Results: We evaluate MDE, RCMDE, and refined composite MSE (RCMSE) on synthetic signals and three biomedical datasets. The MDE, RCMDE, and RCMSE methods show similar results, although the MDE and RCMDE are faster, lead to more stable results, and discriminate different types of physiological signals better than MSE and RCMSE. Conclusion: For noisy short and long time series, MDE and RCMDE are noticeably more stable than MSE and RCMSE, respectively. For short signals, MDE and RCMDE, unlike MSE and RCMSE, do not lead to undefined values. The proposed MDE and RCMDE are significantly faster than MSE and RCMSE, especially for long signals, and lead to larger differences between physiological conditions known to alter the complexity of the physiological recordings.</p

    Refined Composite Multiscale Fuzzy Dispersion Entropy and Its Applications to Bearing Fault Diagnosis

    No full text
    Rotary machines often exhibit nonlinear behavior due to factors such as nonlinear stiffness, damping, friction, coupling effects, and defects. Consequently, their vibration signals display nonlinear characteristics. Entropy techniques prove to be effective in detecting these nonlinear dynamic characteristics. Recently, an approach called fuzzy dispersion entropy (DE–FDE) was introduced to quantify the uncertainty of time series. FDE, rooted in dispersion patterns and fuzzy set theory, addresses the sensitivity of DE to its parameters. However, FDE does not adequately account for the presence of multiple time scales inherent in signals. To address this limitation, the concept of multiscale fuzzy dispersion entropy (MFDE) was developed to capture the dynamical variability of time series across various scales of complexity. Compared to multiscale DE (MDE), MFDE exhibits reduced sensitivity to noise and higher stability. In order to enhance the stability of MFDE, we propose a refined composite MFDE (RCMFDE). In comparison with MFDE, MDE, and RCMDE, RCMFDE’s performance is assessed using synthetic signals and three real bearing datasets. The results consistently demonstrate the superiority of RCMFDE in detecting various patterns within synthetic and real bearing fault data. Importantly, classifiers built upon RCMFDE achieve notably high accuracy values for bearing fault diagnosis applications, outperforming classifiers based on refined composite multiscale dispersion and sample entropy methods
    corecore