3,024 research outputs found

    Long-time and unitary properties of semiclassical initial value representations

    Full text link
    We numerically compare the semiclassical ``frozen Gaussian'' Herman-Kluk propagator [Chem. Phys. 91, 27 (1984)] and the ``thawed Gaussian'' propagator put forward recently by Baranger et al. [J. Phys. A 34, 7227 (2001)] by studying the quantum dynamics in some nonlinear one-dimensional potentials. The reasons for the lack of long time accuracy and norm conservation in the latter method are uncovered. We amend the thawed Gaussian propagator with a global harmonic approximation for the stability of the trajectories and demonstrate that this revised propagator is a true alternative to the Herman-Kluk propagator with similar accuracy.Comment: 14 pages, 4 figures, corrected typos and figure 1 (d

    Excitation transport through Rydberg dressing

    Full text link
    We show how to create long range interactions between alkali-atoms in different hyper-fine ground states, allowing coherent electronic quantum state migration. The scheme uses off resonant dressing with atomic Rydberg states, exploiting the dipole-dipole excitation transfer that is possible between those. Actual population in the Rydberg state is kept small. Dressing offers large advantages over the direct use of Rydberg levels: It reduces ionisation probabilities and provides an additional tuning parameter for life-times and interaction-strengths. We present an effective Hamiltonian for the ground-state manifold and show that it correctly describes the full multi-state dynamics for up to 5 atoms.Comment: 22 pages + 6 pages appendices, 8 figures, replaced with revised version, added journal referenc

    Newton's cradle and entanglement transport in a flexible Rydberg chain

    Full text link
    In a regular, flexible chain of Rydberg atoms, a single electronic excitation localizes on two atoms that are in closer mutual proximity than all others. We show how the interplay between excitonic and atomic motion causes electronic excitation and diatomic proximity to propagate through the Rydberg chain as a combined pulse. In this manner entanglement is transferred adiabatically along the chain, reminiscent of momentum transfer in Newton's cradle.Comment: 4 pages, 3 figures. Revised versio

    Ultracold Neutral Plasmas

    Get PDF
    Ultracold neutral plasmas, formed by photoionizing laser-cooled atoms near the ionization threshold, have electron temperatures in the 1-1000 kelvin range and ion temperatures from tens of millikelvin to a few kelvin. They represent a new frontier in the study of neutral plasmas, which traditionally deals with much hotter systems, but they also blur the boundaries of plasma, atomic, condensed matter, and low temperature physics. Modelling these plasmas challenges computational techniques and theories of non-equilibrium systems, so the field has attracted great interest from the theoretical and computational physics communities. By varying laser intensities and wavelengths it is possible to accurately set the initial plasma density and energy, and charged-particle-detection and optical diagnostics allow precise measurements for comparison with theoretical predictions. Recent experiments using optical probes demonstrated that ions in the plasma equilibrate in a strongly coupled fluid phase. Strongly coupled plasmas, in which the electrical interaction energy between charged particles exceeds the average kinetic energy, reverse the traditional energy hierarchy underlying basic plasma concepts such as Debye screening and hydrodynamics. Equilibration in this regime is of particular interest because it involves the establishment of spatial correlations between particles, and it connects to the physics of the interiors of gas-giant planets and inertial confinement fusion devices.Comment: 89 pages, 54 image

    Inelastic semiclassical Coulomb scattering

    Get PDF
    We present a semiclassical S-matrix study of inelastic collinear electron-hydrogen scattering. A simple way to extract all necessary information from the deflection function alone without having to compute the stability matrix is described. This includes the determination of the relevant Maslov indices. Results of singlet and triplet cross sections for excitation and ionization are reported. The different levels of approximation -- classical, semiclassical, and uniform semiclassical -- are compared among each other and to the full quantum result.Comment: 9 figure

    Many-body theory of excitation dynamics in an ultracold Rydberg gas

    Full text link
    We develop a theoretical approach for the dynamics of Rydberg excitations in ultracold gases, with a realistically large number of atoms. We rely on the reduction of the single-atom Bloch equations to rate equations, which is possible under various experimentally relevant conditions. Here, we explicitly refer to a two-step excitation-scheme. We discuss the conditions under which our approach is valid by comparing the results with the solution of the exact quantum master equation for two interacting atoms. Concerning the emergence of an excitation blockade in a Rydberg gas, our results are in qualitative agreement with experiment. Possible sources of quantitative discrepancy are carefully examined. Based on the two-step excitation scheme, we predict the occurrence of an antiblockade effect and propose possible ways to detect this excitation enhancement experimentally in an optical lattice as well as in the gas phase.Comment: 12 pages, 8 figure

    Correlations of Rydberg excitations in an ultra-cold gas after an echo sequence

    Get PDF
    We show that Rydberg states in an ultra-cold gas can be excited with strongly preferred nearest-neighbor distance if densities are well below saturation. The scheme makes use of an echo sequence in which the first half of a laser pulse excites Rydberg states while the second half returns atoms to the ground state, as in the experiment of Raitzsch et al. [Phys. Rev. Lett. 100 (2008) 013002]. Near to the end of the echo sequence, almost any remaining Rydberg atom is separated from its next-neighbor Rydberg atom by a distance slightly larger than the instantaneous blockade radius half-way through the pulse. These correlations lead to large deviations of the atom counting statistics from a Poissonian distribution. Our results are based on the exact quantum evolution of samples with small numbers of atoms. We finally demonstrate the utility of the omega-expansion for the approximate description of correlation dynamics through an echo sequence.Comment: 8 pages, 6 figure

    Enhanced high-order harmonics through periodicity breaks: From backscattering to impurity states

    Get PDF
    Backscattering of delocalized electrons has been recently established [Phys. Rev. A 105, L041101 (2022)] as a mechanism to enhance high-order harmonic generation (HHG) in periodic systems with broken translational symmetry. Here we study this effect for a variable spatial gap in an atomic chain. Propagating the many-electron dynamics numerically, we find enhanced HHG and identify its origin in two mechanisms, depending on the gap size, either backscattering or enhanced tunneling from an impurity state. Since the gapped atomic chain exhibits both impurities and vacancies in a unified setting, it provides insight into how periodicity breaks influence HHG in different scenarios

    Attosecond light-pulse-induced photoassociation

    Get PDF
    corecore