1,699 research outputs found

    Quantum Lie algebras associated to Uq(gln)U_q(gl_n) and Uq(sln)U_q(sl_n)

    Full text link
    Quantum Lie algebras \qlie{g} are non-associative algebras which are embedded into the quantized enveloping algebras Uq(g)U_q(g) of Drinfeld and Jimbo in the same way as ordinary Lie algebras are embedded into their enveloping algebras. The quantum Lie product on \qlie{g} is induced by the quantum adjoint action of Uq(g)U_q(g). We construct the quantum Lie algebras associated to Uq(gln)U_q(gl_n) and Uq(sln)U_q(sl_n). We determine the structure constants and the quantum root systems, which are now functions of the quantum parameter qq. They exhibit an interesting duality symmetry under q↔1/qq\leftrightarrow 1/q.Comment: Latex 9 page

    On Quantum Lie Algebras and Quantum Root Systems

    Full text link
    As a natural generalization of ordinary Lie algebras we introduce the concept of quantum Lie algebras Lq(g){\cal L}_q(g). We define these in terms of certain adjoint submodules of quantized enveloping algebras Uq(g)U_q(g) endowed with a quantum Lie bracket given by the quantum adjoint action. The structure constants of these algebras depend on the quantum deformation parameter qq and they go over into the usual Lie algebras when q=1q=1. The notions of q-conjugation and q-linearity are introduced. q-linear analogues of the classical antipode and Cartan involution are defined and a generalised Killing form, q-linear in the first entry and linear in the second, is obtained. These structures allow the derivation of symmetries between the structure constants of quantum Lie algebras. The explicitly worked out examples of g=sl3g=sl_3 and so5so_5 illustrate the results.Comment: 22 pages, latex, version to appear in J. Phys. A. see http://www.mth.kcl.ac.uk/~delius/q-lie.html for calculations and further informatio

    Pre-freezing of multifractal exponents in Random Energy Models with logarithmically correlated potential

    Full text link
    Boltzmann-Gibbs measures generated by logarithmically correlated random potentials are multifractal. We investigate the abrupt change ("pre-freezing") of multifractality exponents extracted from the averaged moments of the measure - the so-called inverse participation ratios. The pre-freezing can be identified with termination of the disorder-averaged multifractality spectrum. Naive replica limit employed to study a one-dimensional variant of the model is shown to break down at the pre-freezing point. Further insights are possible when employing zero-dimensional and infinite-dimensional versions of the problem. In particular, the latter version allows one to identify the pattern of the replica symmetry breaking responsible for the pre-freezing phenomenon.Comment: This is published version, 11 pages, 1 figur

    The structure of quantum Lie algebras for the classical series B_l, C_l and D_l

    Get PDF
    The structure constants of quantum Lie algebras depend on a quantum deformation parameter q and they reduce to the classical structure constants of a Lie algebra at q=1q=1. We explain the relationship between the structure constants of quantum Lie algebras and quantum Clebsch-Gordan coefficients for adjoint x adjoint ---> adjoint. We present a practical method for the determination of these quantum Clebsch-Gordan coefficients and are thus able to give explicit expressions for the structure constants of the quantum Lie algebras associated to the classical Lie algebras B_l, C_l and D_l. In the quantum case also the structure constants of the Cartan subalgebra are non-zero and we observe that they are determined in terms of the simple quantum roots. We introduce an invariant Killing form on the quantum Lie algebras and find that it takes values which are simple q-deformations of the classical ones.Comment: 25 pages, amslatex, eepic. Final version for publication in J. Phys. A. Minor misprints in eqs. 5.11 and 5.12 correcte

    Fractional Laplacian in Bounded Domains

    Full text link
    The fractional Laplacian operator, −(−△)α2-(-\triangle)^{\frac{\alpha}{2}}, appears in a wide class of physical systems, including L\'evy flights and stochastic interfaces. In this paper, we provide a discretized version of this operator which is well suited to deal with boundary conditions on a finite interval. The implementation of boundary conditions is justified by appealing to two physical models, namely hopping particles and elastic springs. The eigenvalues and eigenfunctions in a bounded domain are then obtained numerically for different boundary conditions. Some analytical results concerning the structure of the eigenvalues spectrum are also obtained.Comment: 11 pages, 11 figure

    Mitochondrial targeting adaptation of the hominoid-specific glutamate dehydrogenase driven by positive Darwinian selection

    Get PDF
    Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor ~18–25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions

    A (p,q) Deformation of the Universal Enveloping Superalgebra U(osp(2/2))

    Full text link
    We investigate a two parameter quantum deformation of the universal enveloping orthosymplectic superalgebra U(osp(2/2)) by extending the Faddeev-Reshetikhin-Takhtajan formalism to the supersymetric case. It is shown that Up,q(osp(2/2))U_{p,q}(osp(2/2)) possesses a non-commutative, non-cocommutative Hopf algebra structure. All the results are expressed in the standard form using quantum Chevalley basis.Comment: 8 pages; IC/93/41

    Shock statistics in higher-dimensional Burgers turbulence

    Full text link
    We conjecture the exact shock statistics in the inviscid decaying Burgers equation in D>1 dimensions, with a special class of correlated initial velocities, which reduce to Brownian for D=1. The prediction is based on a field-theory argument, and receives support from our numerical calculations. We find that, along any given direction, shocks sizes and locations are uncorrelated.Comment: 4 pages, 8 figure

    A mean-field kinetic lattice gas model of electrochemical cells

    Full text link
    We develop Electrochemical Mean-Field Kinetic Equations (EMFKE) to simulate electrochemical cells. We start from a microscopic lattice-gas model with charged particles, and build mean-field kinetic equations following the lines of earlier work for neutral particles. We include the Poisson equation to account for the influence of the electric field on ion migration, and oxido-reduction processes on the electrode surfaces to allow for growth and dissolution. We confirm the viability of our approach by simulating (i) the electrochemical equilibrium at flat electrodes, which displays the correct charged double-layer, (ii) the growth kinetics of one-dimensional electrochemical cells during growth and dissolution, and (iii) electrochemical dendrites in two dimensions.Comment: 14 pages twocolumn, 17 figure
    • 

    corecore