2,405 research outputs found

    Davisite, CaScAlSiO_6, a new pyroxene from the Allende meteorite

    Get PDF
    Davisite, ideally CaScAlSiO_6, is a new member of the Ca clinopyroxene group, where Sc^(3+) is dominant in the M1 site. It occurs as micro-sized crystals along with perovskite and spinel in an ultra-refractory inclusion from the Allende meteorite. The mean chemical composition determined by electron microprobe analysis is (wt%) SiO_2 26.24, CaO 23.55, Al_2O_3 21.05, Sc_2O_3 14.70, TiO_2 (total) 8.66, MgO 2.82, ZrO_2 2.00, Y_2O_3 0.56, V_2O_3 0.55, FeO 0.30, Dy_2O_3 0.27, Gd_2O_3 0.13, Er_2O_3 0.08, sum 100.91. Its empirical formula calculated on the basis of 6 O atoms is Ca_(0.99)(Sc_(0.50)Ti^(3+)0.16^(Mg)0.16Ti^(4+)0.10 Zr_(0.04)V^(3+)_(0.02)Fe^(2+)_(0.01)Y_(0.01))_(∑1.00)(Si_(1.03)Al_(0.97))_(∑2).00O_6. Davisite is monoclinic, C2/c; a = 9.884 Å, b = 8.988 Å, c = 5.446 Å, β =105.86°, V = 465.39 Å^3, and Z = 4. Its electron back-scattered diffraction pattern is an excellent match to that of synthetic CaScAlSiO6 with the C2/c structure. The strongest calculated X-ray powder diffraction lines are [d spacing in Å (I) (hkl)]: 3.039 (100) (221), 2.989 (31) (310), 2.943 (18) (311), 2.619 (40) (002), 2.600 (26) (131), 2.564 (47) (221), 2.159 (18) (331), 2.137 (15) (421), 1.676 (20) (223), and 1.444 (18) (531). The name is for Andrew M. Davis, a cosmochemist at the University of Chicago, Illinois

    Nano-mineralogy Studies by Advanced Electron Microscopy

    Get PDF
    Extended abstract of a paper presented at Microscopy and Microanalysis 2007 in Ft. Lauderdale, Florida, USA, August 5 – August 9, 2007

    Abundance and Partitioning of OH in a High-pressure Magmatic System: Megacrysts from the Monastery Kimberlite, South Africa

    Get PDF
    Concentrations of OH, and major and trace elements were determined in a suite of mantle-derived megacrysts that represent the crystallization products of a kimberlite-like magma at ~5 GPa and ~1400–1100°C. OH concentrations, determined by single-crystal Fourier transform infrared spectroscopy, display the following ranges (ppmw H2O): olivine 54–262, orthopyroxene 215–263, garnet 15–74, clinopyroxene 195–620, and zircon 28–34. High OH concentrations in olivine imply mantle conditions of origin, with limited H loss during ascent. OH is consistently correlated with megacryst composition, exhibiting trends with Mg-number that are similar to those of other minor and trace elements and indicating a record of high-pressure magmatic evolution. H substitution is not coupled to minor elements in olivine, but may be in ortho- and clinopyroxene. The OH–Mg-number trends of garnet and clinopyroxene show inflections related to co-precipitation of ilmenite, suggesting minor element (Ti) influence on OH partitioning. During differentiation, relative OH enrichment in clinopyroxene and olivine is consistent with proportional dependence on water activity, whereas that in garnet suggests a higher power-law dependence and/or influence of temperature. Inter-mineral distribution coefficients for OH between cpx, opx, olivine and zircon are thus constant, whereas partitioning between these minerals and garnet shows a factor 4–10 variation, correlated regularly with composition (and temperature). Calculation of solid–melt partition coefficients for H at 5 GPa over a range of magmatic evolution from 1380 to 1250°C yields: ol 0·0053–0·0046, opx 0·0093–0·0059, cpx 0·016–0·013, gt 0·0014–0·0003, bulk (garnet lherzolite–melt) 0·0063–0·0051. These are consistent with experimental studies and similar to values inferred from mid-ocean ridge basalt geochemistry, confirming the moderate incompatibility of H in mantle melting

    Time-resolved Raman spectroscopy for in situ planetary mineralogy

    Get PDF
    Planetary mineralogy can be revealed through a variety of remote sensing and in situ investigations that precede any plans for eventual sample return. We briefly review those techniques and focus on the capabilities for on-surface in situ examination of Mars, Venus, the Moon, asteroids, and other bodies. Over the past decade, Raman spectroscopy has continued to develop as a prime candidate for the next generation of in situ planetary instruments, as it provides definitive structural and compositional information of minerals in their natural geological context. Traditional continuous-wave Raman spectroscopy using a green laser suffers from fluorescence interference, which can be large (sometimes saturating the detector), particularly in altered minerals, which are of the greatest geophysical interest. Taking advantage of the fact that fluorescence occurs at a later time than the instantaneous Raman signal, we have developed a time-resolved Raman spectrometer that uses a streak camera and pulsed miniature microchip laser to provide picosecond time resolution. Our ability to observe the complete time evolution of Raman and fluorescence spectra in minerals makes this technique ideal for exploration of diverse planetary environments, some of which are expected to contain strong, if not overwhelming, fluorescence signatures. We discuss performance capability and present time-resolved pulsed Raman spectra collected from several highly fluorescent and Mars-relevant minerals. In particular, we have found that conventional Raman spectra from fine grained clays, sulfates, and phosphates exhibited large fluorescent signatures, but high quality spectra could be obtained using our time-resolved approach

    Plumbophyllite, a new species from the Blue Bell claims near Baker, San Bernardino County, California

    Get PDF
    The new mineral plumbophyllite, Pb2Si4O10·H2O, orthorhombic with space group Pbcn and cell parameters a = 13.2083(4), b = 9.7832(3), c = 8.6545(2) Å, V = 1118.33(5) Å^3, and Z = 4. It occurs as colorless to pale blue prismatic crystals to 3 mm, with wedge-shaped terminations at the Blue Bell claims, about 11 km west of Baker, San Bernardino County, California. It is found in narrow veins in a highly siliceous hornfels in association with cerussite, chrysocolla, fluorite, goethite, gypsum, mimetite, opal, plumbotsumite, quartz, sepiolite, and wulfenite. The streak is white, the luster is vitreous, the Mohs hardness is about 5, and there is one perfect cleavage, {100}. The measured density is 3.96(5) g/cm^3 and the calculated density is 3.940 g/cm^3. Optical properties (589 nm): biaxial (+), {alpha} = 1.674(2), β = 1.684(2), {gamma} = 1.708(2), 2V = 66(2)°, dispersion r > v (strong); X = b, Y = c, Z = a. Electron microprobe analysis provided PbO 60.25, CuO 0.23, SiO_2 36.22 wt%, and CHN analysis provided H_2O 3.29 wt% for a total of 99.99 wt%. Powder IR spectroscopy confirmed the presence of H_2O and single-crystal IR spectroscopy indicated the H_2O to be oriented perpendicular to the b axis. Raman spectra were also obtained. The strongest powder X-ray diffraction lines are [d (hkl) I]: 7.88(110)97, 6.63(200)35, 4.90(020)38, 3.623(202)100, 3.166(130)45, 2.938(312/411/222)57, 2.555(132/213)51, and 2.243(521/332)50. The atomic structure (R1 = 2.04%) consists of undulating sheets of silicate tetrahedra between which are located Pb atoms and channels containing H_2O (and Pb^(2+) lone-pair electrons). The silicate sheets can be described as consisting of zigzag pyroxene-like (SiO_3)_n chains joined laterally into sheets with the unshared tetrahedral apices in successive chains pointed alternately up and down, a configuration also found in pentagonite

    Observation of surface charge screening and Fermi level pinning on a synthetic, boron-doped diamond

    Get PDF
    Spectroscopic current-voltage (I-V) curves taken with a scanning tunneling microscope on a synthetic, boron-doped diamond single crystal indicate that the diamond, boiled in acid and baked to 500 °C in vacuum, does not exhibit ideal Schottky characteristics. These I-V curves taken in ultrahigh vacuum do not fit the traditional theory of thermionic emission; however, the deviation from ideal can be accounted for by charge screening at the diamond surface. At ambient pressure, the I-V curves have a sharp threshold voltage at 1.7 eV above the valence band edge indicating pinning of the Fermi energy. This measurement is in excellent agreement with the 1/3 band gap rule of Mead and Spitzer [Phys. Rev. 134, A713 (1964)]

    Glitter: Gems or Gyps?

    Get PDF
    The variations of color in minerals makes the difference between a valuable gem and a worthless stone. So, naturally, there are many ingenious ways to manipulate that color. A mineralogist describes some of the pitfalls that can accompany artificially colored gemstones

    Coloration of Green Dravite from the Commander Mine, Tanzania

    Get PDF
    A recent Gem Note by Williams et al. (2017) documented green/brown dravite from the Commander mine, Simanjiro District, north-eastern Tanzania. A crystal fragment that was studied for that report was subsequently analysed further by the present author to investigate the nature of its green coloration

    Photo sensor array technology development

    Get PDF
    The development of an improved capability photo sensor array imager for use in a Viking '75 type facsimile camera is presented. This imager consists of silicon photodiodes and lead sulfide detectors to cover a spectral range from 0.4 to 2.7 microns. An optical design specifying filter configurations and convergence angles is described. Three electronics design approaches: AC-chopped light, DC-dual detector, and DC-single detector, are investigated. Experimental and calculated results are compared whenever possible using breadboard testing and tolerance analysis techniques. Results show that any design used must be forgiving of the relative instability of lead sulfide detectors. A final design using lead sulfide detectors and associated electronics is implemented by fabrication of a hybrid prototype device. Test results of this device show a good agreement with calculated values

    In situ planetary mineralogy using simultaneous time resolved fluorescence and Raman spectroscopy

    Get PDF
    Micro-Raman spectroscopy is one of the primary methods of mineralogical analysis in the laboratory, and more recently in the field. Because of its versatility and ability to interrogate rocks in their natural form (Figure 1), it is one of the frontrunners for the next generation of in situ instruments designed to explore adiverse set of solar system bodies (e.g. Mars, Venus, the Moon, and other primitive bodies such as asteroids and the Martian moons Phobos and Deimos), as well as for pre-selection of rock and soil samples for cache and return missions
    corecore