7 research outputs found

    Síntese e caracterização de arcabouços de quitosana com agente antineoplásicos

    Get PDF
    O sistema de liberação controlada de fármacos através da utilização de biomateriais poliméricos associados a compostos com ação antineoplásica pode ser empregado como alternativa de tratamento de neoplasias. Desta forma, este trabalho teve como objetivo a síntese e caracterização de sistemas de arcabouços de quitosana com o agente antineoplásico (1,4-naftoquinona), cuja taxa de liberação pode ser controlada pela utilização de um agente reticulante como o tripolifosfato de sódio (TPP). O método de preparação consistiu da solubilização da quitosana em ácido acético, adição do fármaco, congelamento, liofilização e reticulação com TPP. Todas as amostras foram caracterizadas por Difração de Raios X (DRX), Microscopia Eletrônica de Varredura (MEV), Espectroscopia de Energia Dispersiva de Raios X(EDS), grau de intumescimento e biodegradação enzimática. Na MEV foi evidenciada a formação de poros interconectados com tamanhos e formas variadas em todas as estruturas estudadas caracterizando a formação de arcabouços. Já no EDS foi observada a presença de elementos químicos característico da composição química de cada material. No entanto foi observada a presença do sódio que pode estar relacionado ao agente neutralizante utilizado. A reticulação de parte dos arcabouços foi comprovada pelo DRX, EDS e aumentou a taxa de degradação enzimática in vitro dos mesmos. A incorporação do fármaco foi confirmada por DRX, grau de intumescimento e EDS. Desta forma, pode-se concluir que ocorreu à formação de arcabouços reticulados e não reticulados porosos, com propriedades morfológicas e físico-químicas que podem contribuir para carrear fármacos antineoplásicos, sendo possível controlar a taxa de degradação dos mesmos e provável liberação do fármaco

    HDPE/Chitosan Blends Modified with Organobentonite Synthesized with Quaternary Ammonium Salt Impregnated Chitosan

    No full text
    In this study, blends based on a high density polyethylene (HDPE) and chitosan (CS) were successfully prepared by melt processing, in a laboratory internal mixer. The CS biopolymer content effect (up to maximum of 40%), and, the addition of bentonite clay modified with quaternary ammonium salt (CTAB) impregnated chitosan as a compatibilizing agent, on the properties of the blends was analyzed by Fourier transform-infrared spectroscopy (FT-IR), wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analyses (TG), tensile strength, and scanning electron microscopy (SEM). The use of clay modified with CTAB impregnated chitosan, employing a method developed here, improved the compatibility of HDPE with chitosan, and therefore the thermal and some of the mechanical properties were enhanced, making HDPE/chitosan blends suitable candidates for food packaging. It was possible to obtain products of synthetic polymer, HDPE, with natural polymer, chitosan, using a method very used industrially, with acceptable and more friendly properties to the environment, when compared to conventional synthetic polymers. In addition, due to the possibility of impregnated chitosan with quaternary ammonium salt exhibit higher antibacterial activity than neat chitosan, the HDPE/chitosan/organobentonite blends may be potentially applied in food containers to favor the preservation of food for a longer time in comparison to conventional materials

    Experimental swainsonine poisoning in goats ingesting Ipomoea sericophylla and Ipomoea riedelii (Convolvulaceae)

    No full text
    Ipomoea sericophylla and Ipomoea riedelii cause a glycoprotein storage disease in goats. This paper reports the experimental poisoning in goats by dried I. sericophylla and I. riedelii containing 0.05% and 0.01% swainsonine, respectively. Three groups with four animals each were used. Group 1 received daily doses of 2g/kg body weight (bw) of dried I. sericophylla (150mg of swainsonine/kg). Goats from this group had clinical signs 36-38 days after the start of ingestion. Group 2 received dried I. riedelii daily doses of 2g/kg of I. riedelii (30mg of swainsonine/kg) for 70 days. No clinical signs were observed, therefore the swainsonine dose was increased to 60mg/kg for another 70 days. Goats from Group 2 had clinical signs 26-65 days after increase in swainsonine dose to 60mg/kg. Group 3 was used as control. In these experiments the minimum toxic dose was 60mg/kg which represents 0.0004% of the dry matter in goats ingesting 1.5% bw of the dry matter. For goats ingesting 2%-2.5% bw of dry matter this dose would be 0.00024%-0.0003% of the dry matter. After the end of the experiment two goats were euthanized and another six were observed for recovery of clinical signs. Four goats that continued to consume swainsonine containing plant for 39-89 days after the first clinical signs had non reversible signs, while two goats that ingested the plant for only 15 and 20 days after the first clinical signs recovered completely. These and previous results indicate that irreversible lesions due to neuronal loss occur in goats that continue to ingest the plants for about 30 days after the first clinical signs. Clinical signs and histological lesions were similar to those reported previously for goats poisoned by swainsonine containing plants. No significant alterations were found in packed cell volume, red and white blood cell counts, hemoglobin and mean corpuscular hemoglobin concentrations, mean corpuscular volume, and serum levels of glucose, total protein, and albumin, and the serum activities of gamma glutamyl transferase and aspartate aminotransferase. Swainsonine concentration of 0.05% in I. sericophylla and 0.01% in I. riedelii are different from samples of these plants used in previous experiments, which contained 0.14% and 0.5% swainsonine, respectively, demonstrating a wide variation in the toxicity of different samples
    corecore