47 research outputs found

    Thorough in silico and in vitro cDNA analysis of 21 putative BRCA1 and BRCA2 splice variants and a complex tandem duplication in BRCA2 allowing the identification of activated cryptic splice donor sites in BRCA2 exon 11

    Get PDF
    For 21 putative BRCA1 and BRCA2 splice site variants, the concordance between mRNA analysis and predictions by in silico programs was evaluated. Aberrant splicing was confirmed for 12 alterations. In silico prediction tools were helpful to determine for which variants cDNA analysis is warranted, however, predictions for variants in the Cartegni consensus region but outside the canonical sites, were less reliable. Learning algorithms like Adaboost and Random Forest outperformed the classical tools. Further validations are warranted prior to implementation of these novel tools in clinical settings. Additionally, we report here for the first time activated cryptic donor sites in the large exon 11 of BRCA2 by evaluating the effect at the cDNA level of a novel tandem duplication (5 breakpoint in intron 4; 3 breakpoint in exon 11) and of a variant disrupting the splice donor site of exon 11 (c.6841+1G>C). Additional sites were predicted, but not activated. These sites warrant further research to increase our knowledge on cis and trans acting factors involved in the conservation of correct transcription of this large exon. This may contribute to adequate design of ASOs (antisense oligonucleotides), an emerging therapy to render cancer cells sensitive to PARP inhibitor and platinum therapies

    Determination of cetirizine in human urine by high-performance liquid chromatography

    No full text
    A high-performance liquid chromatographic method for the determination of the histamine H-1-receptor antagonist cetirizine in human urine was developed. Cetirizine and the internal standard are extracted from acidified (pH 5) urine (0.5 ml) into chloroform and the organic layer is evaporated to dryness. The residue is chromatographed on a Spherisorb 5ODS-2 column using Pic A (5 mM aqueous tetrabutylammonium phosphate)-methanol-tetrahydrofuran (33:65:2, v/v) as the mobile phase with ultraviolet detection (230 nm). The calibration graph is linear from 0.1 to 10-mu-g/ml and using 0.5 ml of urine the detection limit is 20 ng/ml. The within-run relative standard deviation is < 6% and the accuracy is within 10% of the theoretical value at concentrations between 0.1 and 10-mu-g/ml in urine. There is a good correlation (r = 0.99606) with a previously described capillary gas chromatographic assay

    Reversed-phase high-performance liquid chromatographic analysis of atenolol enantiomers in plasma after chiral derivatization with (+)-1-(9-fluorenyl)ethyl chloroformate

    No full text
    A sensitive high-performance liquid chromatographic method for the determination of the enantiomers of atenolol in rat plasma has been developed. Racemic atenolol and practolol (internal standard) were extracted from alkalinized plasma (pH 12) into dichloromethane containing 3% (v/v) heptafluoro-1-butanol, and the organic layer was evaporated. The samples were derivatized with (+)-1-(9-fluorenyl)ethyl chloroformate at pH 8.5 for 30 min. After removal of excess reagent, the diastereomers were extracted into dichloromethane. The diastereomers were separated on a Microspher C18 column (3-mu-m) with a mobile phase of acetonitrile-sodium acetate buffer (0.01 M, pH 7) (50:50, v/v) at a flow-rate of 0.8 ml/min. Fluorescence detection (lambda-ex = 227 nm, lambda-em = 310 nm) was used. When 100-mu-l of plasma were used, the quantitation limit was 10 ng/ml for the atenolol enantiomers. The assay was applied to measure concentrations of atenolol enantiomers in plasma after intravenous administration of racemic atenolol to rats
    corecore