4 research outputs found

    3D Imaging of Twin Domain Defects in Gold Nanoparticles

    No full text
    Topological defects are ubiquitous in physics and include crystallographic imperfections such as defects in condensed matter systems. Defects can determine many of the material’s properties, thus providing novel opportunities for defect engineering. However, it is difficult to track buried defects and their interfaces in three dimensions with nanoscale resolution. Here, we report three-dimensional visualization of gold nanocrystal twin domains using Bragg coherent X-ray diffractive imaging in an aqueous environment. We capture the size and location of twin domains, which appear as voids in the Bragg electron density, in addition to a component of the strain field. Twin domains can interrupt the stacking order of the parent crystal, leading to a phase offset between the separated parent crystal pieces. We utilize this phase offset to estimate the roughness of the twin boundary. We measure the diffraction signal from the crystal twin and show its Bragg electron density fits into the parent crystal void. Defect imaging will likely facilitate improvement and rational design of nanostructured materials

    In Situ Bragg Coherent Diffraction Imaging Study of a Cement Phase Microcrystal during Hydration

    No full text
    Results of Bragg coherent diffraction imaging (BCDI) confirm that ion migration and consumption occur during hydration of calcium monoaluminate (CA). The chemical phase transformation promotes the hydration process and the formation of new hydrates. There is a potential for the formation of hydrates near where the active ions accumulate. BCDI has been used to study the in situ hydration process of CA over a 3 day period. The evolution of three-dimensional (3D) Bragg diffraction electron density, the “Bragg density”, and strain fields present on the nanoscale within the crystal was measured and visualized. Initial Bragg densities and strains in CA crystal derived from sintering evolve into various degrees during hydration. The variation of Bragg density within the crystal is attributed to the change of the degree of crystal ordering, which could occur through ion transfer during hydration. The observed strain, coming from the interfacial mismatch effect between high Bragg density and low Bragg density parts in the crystal, remained throughout the experiment. The first Bragg density change during the hydration process is due to a big loss of Bragg density as seen in the image amplitude but not its phase. This work provides new evidence supporting the through-solution reaction mechanism of CA

    Deformation Twinning of a Silver Nanocrystal under High Pressure

    Get PDF
    Within a high-pressure environment, crystal deformation is controlled by complex processes such as dislocation motion, twinning, and phase transitions, which change materials’ microscopic morphology and alter their properties. Understanding a crystal’s response to external stress provides a unique opportunity for rational tailoring of its functionalities. It is very challenging to track the strain evolution and physical deformation from a single nanoscale crystal under high-pressure stress. Here, we report an in situ three-dimensional mapping of morphology and strain evolutions in a single-crystal silver nanocube within a high-pressure environment using the Bragg Coherent Diffractive Imaging (CDI) method. We observed a continuous lattice distortion, followed by a deformation twining process at a constant pressure. The ability to visualize stress-introduced deformation of nanocrystals with high spatial resolution and prominent strain sensitivity provides an important route for interpreting and engineering novel properties of nanomaterials

    Nonequilibrium Structural Dynamics of Nanoparticles in LiNi<sub>1/2</sub>Mn<sub>3/2</sub>O<sub>4</sub> Cathode under Operando Conditions

    No full text
    We study nonequilibrium structural dynamics in LiNi<sub>1/2</sub>Mn<sub>3/2</sub>O<sub>4</sub> spinel cathode material during fast charge/discharge under operando conditions using coherent X-rays. Our in situ measurements reveal a hysteretic behavior of the structure upon cycling and we directly observe the interplay between different transformation mechanisms: solid solution and two-phase reactions at the single nanoparticle level. For high lithium concentrations solid solution is observed upon both charge and discharge. For low lithium concentration, we find concurrent solid solution and two-phase reactions upon charge, while a pure two-phase reaction is found upon discharge. A delithiation model based on an ionic blockade layer on the particle surface is proposed to explain the distinct structural transformation mechanisms in nonequilibrium conditions. This study addresses the controversy of why two-phase materials show exemplary kinetics and opens new avenues to understand fundamental processes underlying charge transfer, which will be invaluable for developing the next generation battery materials
    corecore