7 research outputs found

    Teaching computational reproducibility for neuroimaging

    Get PDF
    We describe a project-based introduction to reproducible and collaborative neuroimaging analysis. Traditional teaching on neuroimaging usually consists of a series of lectures that emphasize the big picture rather than the foundations on which the techniques are based. The lectures are often paired with practical workshops in which students run imaging analyses using the graphical interface of specific neuroimaging software packages. Our experience suggests that this combination leaves the student with a superficial understanding of the underlying ideas, and an informal, inefficient, and inaccurate approach to analysis. To address these problems, we based our course around a substantial open-ended group project. This allowed us to teach: (a) computational tools to ensure computationally reproducible work, such as the Unix command line, structured code, version control, automated testing, and code review and (b) a clear understanding of the statistical techniques used for a basic analysis of a single run in an MRI scanner. The emphasis we put on the group project showed the importance of standard computational tools for accuracy, efficiency, and collaboration. The projects were broadly successful in engaging students in working reproducibly on real scientific questions. We propose that a course on this model should be the foundation for future programs in neuroimaging. We believe it will also serve as a model for teaching efficient and reproducible research in other fields of computational science

    A Foundation Model for Cell Segmentation

    Full text link
    Cells are the fundamental unit of biological organization, and identifying them in imaging data - cell segmentation - is a critical task for various cellular imaging experiments. While deep learning methods have led to substantial progress on this problem, models that have seen wide use are specialist models that work well for specific domains. Methods that have learned the general notion of "what is a cell" and can identify them across different domains of cellular imaging data have proven elusive. In this work, we present CellSAM, a foundation model for cell segmentation that generalizes across diverse cellular imaging data. CellSAM builds on top of the Segment Anything Model (SAM) by developing a prompt engineering approach to mask generation. We train an object detector, CellFinder, to automatically detect cells and prompt SAM to generate segmentations. We show that this approach allows a single model to achieve state-of-the-art performance for segmenting images of mammalian cells (in tissues and cell culture), yeast, and bacteria collected with various imaging modalities. To enable accessibility, we integrate CellSAM into DeepCell Label to further accelerate human-in-the-loop labeling strategies for cellular imaging data. A deployed version of CellSAM is available at https://label-dev.deepcell.org/
    corecore