275 research outputs found

    Accretion Disk Spectra of the Ultra-luminous X-ray Sources in Nearby Spiral Galaxies and Galactic Superluminal Jet Sources

    Full text link
    Ultra-luminous Compact X-ray Sources (ULXs) in nearby spiral galaxies and Galactic superluminal jet sources share the common spectral characteristic that they have unusually high disk temperatures which cannot be explained in the framework of the standard optically thick accretion disk in the Schwarzschild metric. On the other hand, the standard accretion disk around the Kerr black hole might explain the observed high disk temperature, as the inner radius of the Kerr disk gets smaller and the disk temperature can be consequently higher. However, we point out that the observable Kerr disk spectra becomes significantly harder than Schwarzschild disk spectra only when the disk is highly inclined. This is because the emission from the innermost part of the accretion disk is Doppler-boosted for an edge-on Kerr disk, while hardly seen for a face-on disk. The Galactic superluminal jet sources are known to be highly inclined systems, thus their energy spectra may be explained with the standard Kerr disk with known black hole masses. For ULXs, on the other hand, the standard Kerr disk model seems implausible, since it is highly unlikely that their accretion disks are preferentially inclined, and, if edge-on Kerr disk model is applied, the black hole mass becomes unreasonably large (> 300 M_solar). Instead, the slim disk (advection dominated optically thick disk) model is likely to explain the observed super-Eddington luminosities, hard energy spectra, and spectral variations of ULXs. We suggest that ULXs are accreting black holes with a few tens of solar mass, which is not unexpected from the standard stellar evolution scenario, and that their X-ray emission is from the slim disk shining at super-Eddington luminosities.Comment: ApJ, accepte

    Model for Relaxation Oscillations of Luminous Accretion Disk in GRS1915+105: Variable Inner Edge

    Full text link
    To understand the bursting behavior of the microquasar GRS 1915+105, we calculate time evolution of a luminous, optically thick accretion disk around a stellar mass black hole undergoing limit-cycle oscillations between the high- and low- luminosity states. We, especially, carefully solve the behavior of the innermost part of the disk, since it produces significant number of photons during the burst, and fit the theoretical spectra with the multi-color disk model. The fitting parameters are \Tin (the maximum disk temperature) and \Rin (the innermost radius of the disk). We find an abrupt, transient increase in \Tin and a temporary decrease in \Rin during a burst, which are actually observed in GRS 1915+105. The precise behavior is subject to the viscosity prescription. We prescribe the radial-azimuthal component of viscosity stress tensor to be Trϕ=αΠ(pgas/p)μT_{r \phi}=-\alpha \Pi (p_{\rm gas}/p)^{\mu}, with Π\Pi being the height integrated pressure, α\alpha and μ\mu being the parameter, and pp and pgasp_{\rm gas} being the total pressure and gas pressure on the equatorial plane, respectively. Model with μ=0.1\mu=0.1 can produce the overall time changes of \Tin and \Rin, but cannot give an excellent fit to the observed amplitudes. Model with μ=0.2\mu=0.2, on the other hand, gives the right amplitudes, but the changes of \Tin and \Rin are smaller. Although precise matching is left as future work, we may conclude that the basic properties of the bursts of GRS 1915+105 can be explained by our ``limit-cycle oscillation'' model. It is then required that the spectral hardening factor at high luminosities should be about 3 at around the Eddington luminosity instead of less than 2 as is usually assumed.Comment: 11 pages, 5 figures, accepted for publication in Ap

    Scherk-Schwarz Supersymmetry Breaking for Quasi-localized Matter Fields and Supersymmetry Flavor Violation

    Full text link
    We examine the soft supersymmetry breaking parameters induced by the Scherk-Schwarz (SS) boundary condition in 5-dimensional orbifold field theory in which the quark and lepton zero modes are quasi-localized at the orbifold fixed points to generate the hierarchical Yukawa couplings. In such theories, the radion corresponds to a flavon to generate the flavor hierarchy and at the same time plays the role of the messenger of supersymmetry breaking. As a consequence, the resulting soft scalar masses and trilinear AA-parameters of matter zero modes at the compactification scale are highly flavor-dependent, thereby can lead to dangerous flavor violations at low energy scales. We analyze in detail the low energy flavor violations in SS-dominated supersymmetry breaking scenario under the assumption that the compactification scale is close to the grand unification scale and the 4-dimensional effective theory below the compactification scale is given by the minimal supersymmetric standard model. Our analysis can be applied to any supersymmetry breaking mechanism giving a sizable FF-component of the radion superfield, e.g. the hidden gaugino condensation model.Comment: revtex4, 22 pages, some numerical errors are corrected in phenomenological analysis, main conclusion does not chang

    Sheep Updates 2005 - Part 4

    Get PDF
    This session covers twelve papers from different authors: REPRODUCTION 1. Is it worth increasing investment to increase lambing percentages? Lucy Anderton Department of Agriculture Western Australia. 2. What value is a lamb? John Young, Farming Systems Analysis Service, Kojonup, WA 3. Providing twin-bearing ewes with extra energy at lambing produces heavier lambs at marking. Rob Davidson WAMMCO International,, formerly University of Western Australia; Keith Croker, Ken Hart, Department of Agriculture Western Australia, Tim Wiese, Chuckem , Highbury, Western Australia. GENETICS 4. Underlying biological cause of trade-off between meat and wool. Part 1. Wool and muscle glycogen, BM Thomson, I Williams, University of WA, Crawley, JRBriegel, CSIRO Livestock Industries, Floreat Park WA &CRC for the Australian Sheep Industry, JC Greeff, Department of Agriculture Western Australia &CRC for the Australian Sheep Industry. 5. Underlying biological cause of trade-off between meat and wool. Part 2. Wool and fatness, NR Adams1,3, EN Bermingham1,3, JR Briegel1,3, JC Greeff2,3 1CSIRO Livestock Industries, Floreat Park WA 2Department of Agriculture Western Australia, 3CRC for the Australian Sheep Industry 6. Genetic trade-offs between lamb and wool production in Merino breeding programs, Johan Greeff, Department of Agriculture, Western Australia. 7. Clean fleece weight is no phenotypically independent of other traits. Sue Hatcherac and Gordon Refshaugebc aNSWDPI Orange Agricultural Institute, Orange NSW 2800 bUNE c/- NSWDPI Cowra AR&AS Cowra NSW 2794 cAustralian Sheep Industry CRC. 8. When you\u27re on a good thing, do it better: An economic analysis of sheep breed profitability. Emma Kopke, Ross Kingwell, Department of Agriculture, Western Australia, John Young, Farming Systems Analysis Service, Kojonup, WA. 9. Selection Demonstration Flocks: Demonstrating improvementsin productivity of merinos, K.E. Kemper, M.L. Hebart, F.D. Brien, K.S. Jaensch, R.J. Grimson, D.H. Smith South Australian Research and Development Institute 10. You are compromising yield by using Dust Penetration and GFW in breeding programs, Melanie Dowling, Department of Agriculture, Western Australia, A. (Tony) Schlink, CSIRO Livestock Industries, Wembley, Johan Greeff, Department of Agriculture Western Australia. 11. Merino Sheep can be bred for resistance to breech strike. Johan Greeff , John Karlsson, Department of Agriculture Western Australia 12. Parasite resistant sheep and hypersensitivity diarrhoea, L.J.E. Karlsson & J.C. Greeff, Department of Agriculture Western Australi

    Comparing the health of low income and less well educated groups in the United States and Canada

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A limited number of health status and health-related quality of life (HRQL) measures have been used for inter-country comparisons of population health. We compared the health of Canadians and Americans using a preference-based measure.</p> <p>Methods</p> <p>The Joint Canada/United States Survey of Health (JCUSH) 2002–03 conducted a comprehensive cross-sectional telephone survey on the health of community-dwelling residents in Canada and the US (n = 8688). A preference-based measure, the Health Utilities Index Mark 3 (HUI3), was included in the JCUSH. Health status was analyzed for the entire population and white population only in both countries. Mean HUI3 overall scores were compared for both countries. A linear regression determinants of health model was estimated to account for differences in health between Canada and the US. Estimation with bootstraps was used to derive variance estimates that account for the survey's complex sampling design of clustering and stratification.</p> <p>Results</p> <p>Income is associated with health in both countries. In the lowest income quintile, Canadians are healthier than Americans. At lower levels of education, again Canadians are healthier than Americans. Differences in health among subjects in the JCUSH are explained by age, gender, education, income, marital status, and country of residence.</p> <p>Conclusion</p> <p>On average, population health in Canada and the US is similar. However, health disparities between Canadians and Americans exist at lower levels of education and income with Americans worse off. The results highlight the usefulness of continuous preference-based measures of population health such as the HUI3.</p

    R-parity violation and top quark polarization at the Fermilab Tevatron collider

    Full text link
    The lepton or baryon number violating top quark interactions in the supersymmetric standard model with R parity violation contribute to the process d dbar to t tbar at the tree level via the t- or u-channel sfermion exchange. Since these interactions are chiral, they induce polarization to the top quark in the t tbar events at hadron colliders. We show in this article that the polarization can be a useful observable for probing these interactions at the upgraded Fermilab Tevatron collider, because the polarization is expected to be very small in the standard model.Comment: 15 pages, 5 figure

    Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

    Get PDF
    Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease

    Caribbean Corals in Crisis: Record Thermal Stress, Bleaching, and Mortality in 2005

    Get PDF
    BACKGROUND The rising temperature of the world's oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. METHODOLOGY/PRINCIPAL FINDINGS Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers' field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. CONCLUSIONS/SIGNIFICANCE Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch's Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate.This work was partially supported by salaries from the NOAA Coral Reef Conservation Program to the NOAA Coral Reef Conservation Program authors. NOAA provided funding to Caribbean ReefCheck investigators to undertake surveys of bleaching and mortality. Otherwise, no funding from outside authors' institutions was necessary for the undertaking of this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Canvass: a crowd-sourced, natural-product screening library for exploring biological space

    Full text link
    NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio
    corecore