16 research outputs found

    Process Optimization for 100 W Nanosecond Pulsed Fiber Laser Engraving of 316L Grade Stainless Steel

    Get PDF
    High average power (&gt;50 W) nanosecond pulsed fiber lasers are now routinely available owing to the demand for high throughput laser applications. However, in some applications, scale-up in average power has a detrimental effect on process quality due to laser-induced thermal accumulation in the workpiece. To understand the laser–material interactions in this power regime, and how best to optimize process performance and quality, we investigated the influence of laser parameters such as pulse duration, energy dose (i.e., total energy deposited per unit area), and pulse repetition frequency (PRF) on engraving 316L stainless steel. Two different laser beam scanning strategies, namely, sequential method (SM) and interlacing method (IM), were examined. For each set of parameters, the material removal rate (MRR) and average surface roughness (Sa) were measured using an Alicona 3D surface profilometer. A phenomenological model has been used to help identify the best combination of laser parameters for engraving. Specifically, this study has found that (i) the model serves as a quick way to streamline parameters for area engraving (ii) increasing the pulse duration and energy dose at certain PRF results in a high MRR, albeit with an associated increase in Sa, and (iii) the IM offers 84% reduction in surface roughness at a higher MRR compared to SM. Ultimately, high quality at high throughput engraving is demonstrated using optimized process parameters.</jats:p

    Laserschneiden von Batteriefolien mit gepulsten Lasersystemen

    No full text
    Die Nachfrage und Innovation bei der Batterieherstellung steigt zunehmend mit dem wachsenden Bedarf an e-Mobilität. Da mechanische Verfahren bei der Produktion von Batteriezellen oft an ihre Grenzen stoßen, kann der Laser als präzises kontaktloses Werkzeug viele Vorteile bieten gegenüber klassischen mechanischen Bearbeitungsverfahren. Die Wahl der passenden Laser-Technologie gestaltet sich jedoch aufgrund der Komplexität der Folienmaterialien und Elektrodenzusammensetzungen als herausfordernd. Während das Schneiden mit kontinuierlichen Lasern oft zu großen Wärmeeinflusszonen führt, insbesondere bei beschichteten Folien, sind gepulste Laser in der Lage, in der Regel eine bessere Qualität beim Schneiden zu erzielen. Der Beitrag gibt einen Überblick über die Herausforderungen des Laser-Schneidens von Batteriefolien und untersucht die Vor- und Nachteile von Nanosekunden- und Pikosekunden-Lasern für eine Vielzahl von verschiedenen Materialien

    Changes in the Laser-Processed Ti6Al4V Titanium Alloy Surface Observed by Using Raman Spectroscopy.

    No full text
    Peer reviewed: TrueThis works reports on the effects of treating the surface of Ti6Al4V titanium alloy samples with a laser with a wavelength of 1064 nm, operating in a pulsed and continuous mode. The obtained surfaces with different roughness, complexity and wettability were examined by Raman spectroscopy in order to recognize the presence of titanium oxides on the functionalized surface. The layer of titanium oxides on the surface with the identified rutile phase obtained by laser treatment in the continuous wave mode is a reason for a hydrophobic surface that appeared 50 days after the treatment process. In the case of the surface obtained by the pulsed laser process, only local points at which the Raman bands attributed to the metastable phases anatase and brookite of TiO2 can be identified. In this treatment process, complete surface hydrophilicity was observed during 29 days after the functionalization process (maximal contact angle observed during this time was 68.4 deg). For some functionalization processes of different parameters, the contact angle remained immeasurable until 119 days after the functionalization process. In summary, Raman spectroscopy identifies surface changes of Ti6Al4V after laser processing

    Orthogonal Functionalization of Nanodiamond Particles after Laser Modification and Treatment with Aromatic Amine Derivatives

    No full text
    A laser system with a wavelength of 1064 nm was used to generate sp2 carbon on the surfaces of nanodiamond particles (NDPs). The modified by microplasma NDPs were analysed using FT-IR and Raman spectroscopy. Raman spectra confirmed that graphitization had occurred on the surfaces of the NDPs. The extent of graphitization depended on the average power used in the laser treatment process. FT-IR analysis revealed that the presence of C=C bonds in all spectra of the laser-modified powder. The characteristic peaks for olefinic bonds were much more intense than in the case of untreated powder and grew in intensity as the average laser power increased. The olefinized nanodiamond powder was further functionalized using aromatic amines via in situ generated diazonium salts. It was also found that isokinetic mixtures of structurally diverse aromatic amines containing different functional groups (acid, amine) could be used to functionalize the surfaces of the laser-modified nanoparticles leading to an amphiphilic carbon nanomaterial. This enables one-step orthogonal functionalization and opens the possibility of selectively incorporating molecules with diverse biological activities on the surfaces of NDPs. Modified NDPs with amphiphilic properties resulting from the presence carboxyl and amine groups were used to incorporate simultaneously folic acid (FA-CONH-(CH2)5-COOH) and 5(6)-carboxyfluorescein (FL-CONH-(CH2)2-NH2) derivatives on the surface of material under biocompatible procedures
    corecore