25 research outputs found

    Ultra-Lithium-Deficient Halo Stars and Blue Stragglers: A Common Origin?

    Full text link
    We present data for four ultra-Li-deficient, warm, halo stars. The Li deficiency of two of these is a new discovery. Three of the four stars have effective temperatures Teff ~ 6300 K, in contrast to previously known Li-deficient halo stars which spanned the temperature range of the Spite Plateau. In this paper we propose that these, and previously known ultra-Li-deficient halo stars, may have had their surface lithium abundances reduced by the same mechanism as produces halo field blue stragglers. Even though these stars have yet to reveal themselves as blue stragglers, they might be regarded as "blue-stragglers-to-be." In our proposed scenario, the surface abundance of Li in these stars could be destroyed (a) during the normal pre-main-sequence single star evolution of their low mass precursors, (b) during the post-main-sequence evolution of a evolved mass donor, and/or (c) via mixing during a mass-transfer event or stellar merger. The warmest Li-deficient stars at the turnoff would be regarded as emerging "canonical" blue stragglers, whereas cooler ones represent sub-turnoff-mass "blue-stragglers-to-be." The latter are presently hidden on the main sequence, Li depletion being possibly the clearest signature of their past history and future significance. Eventually, the main sequence turnoff will reach down to their mass, exposing those Li-depleted stars as canonical blue stragglers when normal stars of that mass evolve away. Arguing against this unified view is the observation that the three Li-depleted stars at Teff ~ 6300 K are all binaries, whereas very few of the cooler systems show evidence for binarity; it is thus possible that two separate mechanisms are responsible for the production of Li-deficient main-sequence halo stars.Comment: 23 pages including 3 figures. 2001, ApJ, 547, xxx (1 February

    Picosecond X-ray diffraction from shock-compressed metals

    No full text
    In this thesis, Molecular Dynamics simulations of shocked single crystals of Copper and Iron are studied using simulated X-ray diffraction. Strains and volumetric compression in modeled Copper crystals shock-compressed on picosecond time-scales are found. By comparing the shifts in the second and fourth diffraction orders, the density of dislocations is calculated. In Iron, simulated X-ray diffraction is used to verify the modelling of the α-ε phase transition induced by shock-compression on picosecond time-scales. No plastic deformation of Iron is found in the studied pressure range of ~ 15-53 GPa. The results are then compared with data from in situ X-ray diffraction experiments of laser-shocked single crystals. Near-hydrostatic compression of shock-compressed Copper on nanosecond time-scales is confirmed using a new wide-angle film diagnostic capturing diffraction from multiple crystal planes. Also, the first in situ X-ray diffraction evidence of the onset of the α-ε phase transition in laser-shocked single crystal Iron is shown. No plastic yield of the crystal lattice is found, which is in agreement with the simulation results. Results from both the Molecular Dynamics simulations and experiments are used to suggest enhancements in computer modelling of shocked crystals, as well as future experimental studies. In particular, the need for a measurement of dislocation densities during the shock wave passage through a crystal is highlighted, and a method enabling such a measurement is proposed.</p

    Picosecond X-ray diffraction from shock-compressed metals: experiments and computational analysis of molecular dynamics simulations

    No full text
    In this thesis, Molecular Dynamics simulations of shocked single crystals of Copper and Iron are studied using simulated X-ray diffraction. Strains and volumetric compression in modeled Copper crystals shock-compressed on picosecond time-scales are found. By comparing the shifts in the second and fourth diffraction orders, the density of dislocations is calculated. In Iron, simulated X-ray diffraction is used to verify the modelling of the α-ε phase transition induced by shock-compression on picosecond time-scales. No plastic deformation of Iron is found in the studied pressure range of ~ 15-53 GPa. The results are then compared with data from in situ X-ray diffraction experiments of laser-shocked single crystals. Near-hydrostatic compression of shock-compressed Copper on nanosecond time-scales is confirmed using a new wide-angle film diagnostic capturing diffraction from multiple crystal planes. Also, the first in situ X-ray diffraction evidence of the onset of the α-ε phase transition in laser-shocked single crystal Iron is shown. No plastic yield of the crystal lattice is found, which is in agreement with the simulation results. Results from both the Molecular Dynamics simulations and experiments are used to suggest enhancements in computer modelling of shocked crystals, as well as future experimental studies. In particular, the need for a measurement of dislocation densities during the shock wave passage through a crystal is highlighted, and a method enabling such a measurement is proposed

    Measuring stacking fault densities in shock-compressed FCC crystals using in situ x-ray diffraction

    No full text
    A method is presented of in situ measurements of stacking fault densities in shocked face-centred-cubic (FCC) crystals using x-ray diffraction. Using results from both the second and fourth diffraction orders, wherein shifts in the Bragg peaks due to faulting are accounted for, we calculated fault densities present in a molecular dynamics (MD) simulation of shocked single crystal of copper. The results are in good quantitative agreement with dislocation density measurements inferred directly from the MD simulation. The x-ray diffraction method thus presents a real possibility for experimental determination in real time of dislocation densities in crystals during shock wave passage. © 2006 IOP Publishing Ltd
    corecore