161 research outputs found

    The State of Self-Organized Criticality of the Sun During the Last Three Solar Cycles. II. Theoretical Model

    Full text link
    The observed powerlaw distributions of solar flare parameters can be interpreted in terms of a nonlinear dissipative system in the state of self-organized criticality (SOC). We present a universal analytical model of a SOC process that is governed by three conditions: (i) a multiplicative or exponential growth phase, (ii) a randomly interrupted termination of the growth phase, and (iii) a linear decay phase. This basic concept approximately reproduces the observed frequency distributions. We generalize it to a randomized exponential-growth model, which includes also a (log-normal) distribution of threshold energies before the instability starts, as well as randomized decay times, which can reproduce both the observed occurrence frequency distributions and the scatter of correlated parametyers more realistically. With this analytical model we can efficiently perform Monte-Carlo simulations of frequency distributions and parameter correlations of SOC processes, which are simpler and faster than the iterative simulations of cellular automaton models. Solar cycle modulations of the powerlaw slopes of flare frequency distributions can be used to diagnose the thresholds and growth rates of magnetic instabilities responsible for solar flares.Comment: Part II of Paper I: The State of Self-Organized Criticality of the Sun During the Last Three Solar Cycles. I. Observation

    Two-Body Cabibbo-Suppressed Charmed Meson Decays

    Get PDF
    Singly-Cabibbo-suppressed decays of charmed particles governed by the quark subprocesses csusˉc \to s u \bar s and cdudˉc \to d u \bar d are analyzed using a flavor-topology approach, based on a previous analysis of the Cabibbo-favored decays governed by csudˉc \to s u \bar d. Decays to PPPP and PVPV, where PP is a pseudoscalar meson and VV is a vector meson, are considered. We include processes in which η\eta and η\eta ' are produced.Comment: 18 pages, latex, 2 figures, to be submitted to Phys. Rev.

    Deterministically Driven Avalanche Models of Solar Flares

    Full text link
    We develop and discuss the properties of a new class of lattice-based avalanche models of solar flares. These models are readily amenable to a relatively unambiguous physical interpretation in terms of slow twisting of a coronal loop. They share similarities with other avalanche models, such as the classical stick--slip self-organized critical model of earthquakes, in that they are driven globally by a fully deterministic energy loading process. The model design leads to a systematic deficit of small scale avalanches. In some portions of model space, mid-size and large avalanching behavior is scale-free, being characterized by event size distributions that have the form of power-laws with index values, which, in some parameter regimes, compare favorably to those inferred from solar EUV and X-ray flare data. For models using conservative or near-conservative redistribution rules, a population of large, quasiperiodic avalanches can also appear. Although without direct counterparts in the observational global statistics of flare energy release, this latter behavior may be relevant to recurrent flaring in individual coronal loops. This class of models could provide a basis for the prediction of large solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar Physic

    Charmless Two-body Baryonic B Decays

    Full text link
    We study charmless two-body baryonic B decays in a diagramatic approach. Relations on decay amplitudes are obtained. In general there are more than one tree and more than one penguin amplitudes. The number of independent amplitudes can be reduced in the large m_B limit. It leads to more predictive results. Some prominent modes for experimental searches are pointed out.Comment: 15 pages, 2 figures. To appear in Phys. Rev.

    Reevaluation of the role of nuclear uncertainties in experiments on atomic parity violation with isotopic chains

    Get PDF
    In light of new data on neutron distributions from experiments with antiprotonic atoms [ Trzcinska {\it et al.}, Phys. Rev. Lett. 87, 082501 (2001)], we reexamine the role of nuclear-structure uncertainties in the interpretation of measurements of parity violation in atoms using chains of isotopes of the same element. With these new nuclear data, we find an improvement in the sensitivity of isotopic chain measurements to ``new physics'' beyond the standard model. We compare possible constraints on ``new physics'' with the most accurate to date single-isotope probe of parity violation in the Cs atom. We conclude that presently isotopic chain experiments employing atoms with nuclear charges Z < 50 may result in more accurate tests of the weak interaction.Comment: 6 pages, 1 fig., submitted to Phys. Rev.

    Self-generated magnetic flux in YBa2_2Cu3_3O7x_{7-x} grain boundaries

    Full text link
    Grain boundaries in YBa2_2Cu3_3O7x_{7-x} superconducting films are considered as Josephson junctions with a critical current density jc(x)j_c(x) alternating along the junction. A self-generated magnetic flux is treated both analytically and numerically for an almost periodic distribution of jc(x)j_c(x). We obtained a magnetic flux-pattern similar to the one which was recently observed experimentally.Comment: 7 pages, 3 figure

    Parity-Violating Excitation of the \Delta(1232): Hadron Structure and New Physics

    Full text link
    We consider prospects for studying the parity-violating (PV) electroweak excitation of the \Delta(1232) resonance with polarized electron scattering. Given present knowledge of Standard Model parameters, such PV experiments could allow a determination of the N -> \Delta electroweak helicity amplitudes. We discuss the experimental feasibility and theoretical interpretability of such a determination as well as the prospective implications for hadron structure theory. We also analyze the extent to which a PV N -> \Delta measurement could constrain various extensions of the Standard Model.Comment: 43 pages, RevTex, 8 PS figures, uses epsf.sty, rotate.sty, version to appear in Nucl. Phys. A, main points emphasized, some typos correcte

    Time-dependent Stochastic Modeling of Solar Active Region Energy

    Full text link
    A time-dependent model for the energy of a flaring solar active region is presented based on a stochastic jump-transition model (Wheatland and Glukhov 1998; Wheatland 2008; Wheatland 2009). The magnetic free energy of the model active region varies in time due to a prescribed (deterministic) rate of energy input and prescribed (random) flare jumps downwards in energy. The model has been shown to reproduce observed flare statistics, for specific time-independent choices for the energy input and flare transition rates. However, many solar active regions exhibit time variation in flare productivity, as exemplified by NOAA active region AR 11029 (Wheatland 2010). In this case a time-dependent model is needed. Time variation is incorporated for two cases: 1. a step change in the rates of flare jumps; and 2. a step change in the rate of energy supply to the system. Analytic arguments are presented describing the qualitative behavior of the system in the two cases. In each case the system adjusts by shifting to a new stationary state over a relaxation time which is estimated analytically. The new model retains flare-like event statistics. In each case the frequency-energy distribution is a power law for flare energies less than a time-dependent rollover set by the largest energy the system is likely to attain at a given time. For Case 1, the model exhibits a double exponential waiting-time distribution, corresponding to flaring at a constant mean rate during two intervals (before and after the step change), if the average energy of the system is large. For Case 2 the waiting-time distribution is a simple exponential, again provided the average energy of the system is large. Monte Carlo simulations of Case~1 are presented which confirm the analytic estimates. The simulation results provide a qualitative model for observed flare statistics in active region AR 11029.Comment: 25 pages, 9 figure

    Properties of the Strange Axial Mesons in the Relativized Quark Model

    Get PDF
    We studied properties of the strange axial mesons in the relativized quark model. We calculated the K1K_1 decay constant in the quark model and showed how it can be used to extract the K1(3P1)K1(1P1)K_1 (^3P_1) - K_1 (^1P_1) mixing angle (θK\theta_K) from the weak decay τK1ντ\tau \to K_1 \nu_\tau. The ratio BR(τντK1(1270))/BR(τντK1(1400))BR(\tau \to \nu_\tau K_1 (1270))/BR(\tau\to \nu_\tau K_1(1400)) is the most sensitive measurement and also the most reliable since the largest of the theoretical uncertainties factor out. However the current bounds extracted from the TPC/Two-Gamma collaboration measurements are rather weak: we typically obtain 30oθK50o-30^o \lesssim \theta_K \lesssim 50^o at 68\% C.L. We also calculated the strong OZI-allowed decays in the pseudoscalar emission model and the flux-tube breaking model and extracted a 3P11P1^3P_1 - ^1P_1 mixing angle of θK45o\theta_K \simeq 45^o. Our analysis also indicates that the heavy quark limit does not give a good description of the strange mesons.Comment: Revised version to be published in Phys. Rev. D. Minor changes. Latex file uses revtex version 3 and epsfig, 4 postcript figures are attached. The full postcript version with embedded figures is available at ftp://ftp.physics.carleton.ca/pub/theory/godfrey/ocipc9512.ps.

    EUV Analysis of a Quasi-Static Coronal Loop Structure

    Full text link
    Decaying active region 10942 is investigated from 4:00-16:00 UT on February 24, 2007 using a suite of EUV observing instruments. Results from Hinode/EIS, STEREO and TRACE show that although the active region has decayed and no sunspot is present, the physical mechanisms that produce distinguishable loop structures, spectral line broadening, and plasma flows still occur. A coronal loop that appears as a blue-shifted structure in Doppler maps is apparent in intensity images of log(T) = 6.0-6.3 ions. The loop structure is found to be anti-correlated with spectral line broadening generally attributed to nonthermal velocities. This coronal loop structure is investigated physically (temperature, density, geometry) and temporally. Lightcurves created from imaging instruments show brightening and dimming of the loop structure on two different time scales; short pulses of 10-20 min and long duration dimming of 2-4 hours until its disappearance. The coronal loop structure, formed from relatively blue-shifted material that is anti-correlated with spectral line broadening, shows a density of 10^10 to 10^9.3 cm-3 and is visible for longer than characteristic cooling times. The maximum nonthermal spectral line broadenings are found to be adjacent to the footpoint of the coronal loop structure.Comment: 26 pages, 13 figures; Solar Physics 201
    corecore