5 research outputs found

    Compressibility and permeability of solidified dredged marine soils (DMS) with the addition of cement andor waste granular materials (WGM)

    Get PDF
    Dredged marine soils that obtained from dredging work were characterize as geo-waste, which is prone to be dumped rather than to be reused. This type of soil is high in compressibility and low in load bearing capacity. The engineering properties of this soft soil can be improve via soil solidification method. Cement is the common hydraulic binder used in soil solidification, were found to generate the emission of greenhouse gasses (GHG), particularly carbon dioxide (CO2) which also had affected the earth’s atmosphere. Therefore, there has been an increasing interest in using alternate pozzolanic materials such as waste granular materials (WGM) to fully or partially substituted the use of cement in soil solidification. WGM such as coal bottom ash (BA) and palm oil clinker (POC) were opted due to its pozzolanic properties. Prior to the planning of reclamation work using DMS admixed with conventional and/or alternate pozzolanic materials, the consolidation characteristics of the admixed materials must be acknowledged. Hence, the present study will examine the amount of settlement and coefficient of permeability (k) of DMS treated with cement and/or WGM in laboratory-scale experiments. Samples were prepared in various proportion in order to examine the individual effect of the cement and/or alternate pozzolanic materials on compressibility and permeability. For cement-admixed DMS, sample with 20 % of cement have significantly reduced the settlement than untreated and 10 % cemented DMS. For WGM-admixed DMS, the initial void ratio is low as compared to the untreated DMS due to the rearrangement of soil particles, which is densely packed. For cement-WGM-admixed DMS, samples of 15C50BA and 15C50POC displayed significant settlement reduction than 10C100BA, 10C100POC and untreated samples

    Chemical Stabilization of Clayey Soil with Polypropylene Fiber Reinforcement for Roadbase Construction

    Get PDF
    Roads are essential as a medium for people to connect and also to improve the economic activities of a country. Khan et al. [1] added that road and highway are the centers of economic activities in all countries where land-based communication is dominant. Due to the population growth, residential and commercial developments are also in high demand. The construction of roads is also increasing to meet the living standard of the population, especially in a rural area. Rural road is mainly used as a pathway to reach plantation and sub-urban areas. However, rural road is at risk due to heavy load agricultural vehicles as it may cause road damages and will affect economic and development activities

    Compressibility and consolidation behaviors of Dredged Marine Soils (DMS) admixed with cement and/or Waste Granular Materials (WGM)

    Get PDF
    Relatively low engineering properties of dredged marine soils (DMS) have rendered the soil as geo-waste which is most likely to be discarded back into the sea. Soil improvement by using cement could easily improve the engineering properties of the soil. However, with the increasing trends of green technology and sustainable engineering, many researchers seek for alternative pozzolanic materials such as coal bottom ash (BA) and palm oil clinker (POC) to fully or partially substitute the use of cement. Therefore, series of one-dimensional consolidation test were executed on samples with various percentages of admixtures in the present study. This study examines the compressibility and time-dependent consolidation behaviour of the samples. Based on the findings, cemented DMS shows higher void ratio than WGM-admixed DMS. The cement-WGM-admixed samples display considerable compressibility and time-dependent consolidation properties. Moreover, the addition of BA in cement-admixed DMS could reduce the usage of 5 % cement. These findings suggest that in general, WGM could be act as supplementary additives to cement

    The Effect of Binder and Waste Granular Materials (WGM) on the Shear Strength and Shear Resistance of Dredged Marine Soils (DMS)

    No full text
    Dredged marine soil (DMS) is considered as weak and soft problematic soil. It is possible to give this type of soil a second life if only its geotechnical properties are improved. Infusing soil with solidification agent is the common practice of soil improvement. This study uses binder and waste granular material (WGM) such as cement, bottom ash (BA) and palm oil clinker (POC). The aforementioned materials are capable to fortify the poor features of the soil. Series numbers of soil bed samples were tested for its shear strength and shear resistance. Test results show that the mentioned soil parameters were corresponded with each other. In short, geo-waste and biomass materials are possible to be reused instead of being discarded

    Beneficial Reuse of Dredged Marine Soils (DMS) with the Inclusion of Cement and Granular Material for Engineering Applications

    No full text
     Plenty of geowaste in Malaysia namely dredged marine soils (DMS) has been increasing over the year. The management of DMS after dredging has become a worldwide problem. Conventionally, the materials are disposed back to the sea. As the minimization of the dredged material during dredging is impossible, extensive work has been done by researchers to develop various economical and viable solutions, such as beneficial reuse of DMS. Series of one-dimensional test by using oedometer were tested on DMS with the inclusion cement and mining sand. Based from the results, the cement- and sand-treated DMS have resulted with low settlement reduction, thus increase its effective yield stress and improve its compressibility. As conclusion, it is suggested that DMS can be beneficially reuse for engineering application such as land reclamation or backfills
    corecore