66 research outputs found

    Podocalyxin in the Diagnosis and Treatment of Cancer

    Get PDF
    Kelly M. McNagny, Michael R. Hughes, Marcia L. Graves, Erin J. DeBruin, Kimberly Snyder, Jane Cipollone, Michelle Turvey, Poh C. Tan, Shaun McColl and Calvin D. Roskelle

    The CD34-Related Molecule Podocalyxin Is a Potent Inducer of Microvillus Formation

    Get PDF
    BACKGROUND: Podocalyxin is a CD34-related transmembrane protein involved in hematopoietic cell homing, kidney morphogenesis, breast cancer progression, and epithelial cell polarization. Although this sialomucin has been shown to block cell adhesion, the mechanisms involved remain enigmatic. It has, however, been postulated that the adaptor proteins NHERF-1 and 2 could regulate apical targeting of Podocalyxin by linking it to the actin cytoskeleton. PRINCIPAL FINDINGS: Here, in contrast, we find that full-length Podocalyxin acts to recruit NHERF-1 to the apical domain. Moreover, we show that ectopic expression of Podocalyxin in epithelial cells leads to microvillus formation along an expanded apical domain that extends laterally to the junctional complexes. Removal of the C-terminal PDZ-binding domain of Podocalyxin abolishes NHERF-1 recruitment but, surprisingly, has no effect on the formation of microvilli. Instead, we find that the extracellular domain and transmembrane region of Podocalyxin are sufficient to direct recruitment of filamentous actin and ezrin to the plasma membrane and induce microvillus formation. CONCLUSIONS/SIGNIFICANCE: Our data suggest that this single molecule can modulate NHERF localization and, independently, act as a key orchestrator of apical cell morphology, thereby lending mechanistic insights into its multiple roles as a polarity regulator, tumor progression marker, and anti-adhesin

    Regulation of BRCA1 expression and its relationship to sporadic breast cancer

    Get PDF
    Germ-line mutations in the BRCA1 tumour suppressor gene contribute to familial breast tumour formation, but there is no evidence for direct mutation of the BRCA1 gene in the sporadic form of the disease. In contrast, decreased expression of the BRCA1 gene has been shown to be common in sporadic tumours, and the magnitude of the decrease correlates with disease progression. BRCA1 expression is also tightly regulated during normal breast development. Determining how these developmental regulators of BRCA1 expression are co-opted during breast tumourigenesis could lead to a better understanding of sporadic breast cancer aetiology and the generation of novel therapeutic strategies aimed at preventing sporadic breast tumour progression
    • …
    corecore