1 research outputs found

    Characterization method of dielectric properties of free falling drops in a microwave processing cavity and its application in microwave internal gelation

    Full text link
    [EN] Microwave internal gelation (MIG) is a chemical process proposed for the production of nuclear particle fuel. The internal gelation reaction is triggered by a temperature increase of aqueous droplets falling by gravity by means of non-contact microwave heating. Due to the short residence time of a solution droplet in a microwave heating cavity, a detailed knowledge of the interaction between microwaves and chemical solution (shaped in small drops) is required. This paper describes a procedure that enables the measurement of the dielectric properties of aqueous droplets that freely fall through a microwave cavity. These measurements provide the information to determine the optimal values of the parameters (such as frequency and power) that dictate the heating of such a material under microwaves.This work is a part of the PINE (Platform for Innovative Nuclear FuEls) project which targets the development of an advanced production method for Sphere-Pac fuel and is financed by the Swiss Competence Center for Energy and Mobility. The work has been also financed by the European Commission through contract no 295664 regarding the FP7 PELGRIMM Project, as well as contract no 295825 regarding the FP7-ASGARD Project. MC-S would like to thank the ITACA research team (UPV Valencia, Spain) and the EMPA Thun (Switzerland) for their support in the measurements and Carl Beard (PSI, Switzerland) for the help provided in respect with CST simulations. The work of FLP-F was supported by the Conselleria d'Educacio of the Generalitat Valenciana for economic support (BEST/2012/010).Cabanes Sempere, M.; Catalá Civera, JM.; Penaranda-Foix, FL.; Cozzo, C.; Vaucher, S.; Pouchon, MA. (2013). Characterization method of dielectric properties of free falling drops in a microwave processing cavity and its application in microwave internal gelation. Measurement Science and Technology. 24(9). https://doi.org/10.1088/0957-0233/24/9/095009S24
    corecore