1,865 research outputs found

    Searches for Gauge-Mediated SUSY Breaking Topologies with the L3 Detector at LEP

    Get PDF
    Searches for topologies predicted by gauge-mediated SUSY breaking models were performed using data collected with the L3 detector at LEP. All possible lifetimes of the next-to-lightest SUSY particle (NLSP), neutralino or scalar tau, were considered. No evidence for these new phenomena was found and limits on the production cross sections and sparticle masses were derived. A scan over the parameters of the minimal GMSB model was performed, leading to lower limits of 62.2 GeV, 11 TeV, and 0.07 eV on the NLSP mass, the mass scale parameter Lambda, and the gravitino mass, respectively. The status of the LEP combined searches is also discussed.Comment: 4 pages, 2 figures, 1 table; to appear in Proceedings of SUSY06, the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions, UC Irvine, California, 12-17 June 200

    Dark Matter searches with AMS02

    Get PDF
    International audienceThe Alpha Magnetic Spectrometer (AMS), to be installed on the International Space Station, will provide data on cosmic radiations in a large range of rigidity from 0.5 GV up to 2 TV. The main physics goals in the astroparticle domain are the anti- matter and the dark matter searches. Observations and cosmology indicate that the Universe may include a large amount of unknown Dark Matter. It should be composed of non baryonic Weakly Interacting Massive Particles (WIMP). A good WIMP candidate being the lightest SUSY particle in R-parity conserving models. AMS offers a unique opportunity to study simultaneously SUSY dark matter in three decay channels from the neutralino annihilation: e+, antiproton and gamma. The supersymmetric theory frame is considered together with alternative scenarios (extra dimensions). The expected flux sensitivities in 3 year exposure for the e+/e- ratio, antiproton and gamma yields as a function of energy are presented and compared to other direct and indirect searches

    LEP constraints on SUSY dark matter

    Get PDF

    Optimization of multivariate analysis for IACT stereoscopic systems

    Full text link
    Multivariate methods have been recently introduced and successfully applied for the discrimination of signal from background in the selection of genuine very-high energy gamma-ray events with the H.E.S.S. Imaging Atmospheric Cerenkov Telescope. The complementary performance of three independent reconstruction methods developed for the H.E.S.S. data analysis, namely Hillas, model and 3D-model suggests the optimization of their combination through the application of a resulting efficient multivariate estimator. In this work the boosted decision tree method is proposed leading to a significant increase in the signal over background ratio compared to the standard approaches. The improved sensitivity is also demonstrated through a comparative analysis of a set of benchmark astrophysical sources.Comment: 10 pages, 8 figures, 3 tables, accepted for publication in Astroparticle Physic

    AMS02 Ecal gamma trigger performance measured at the October 2004 CERN test beam

    Full text link
    Test beam data collected in October 2004 at CERN PS to validate the AMS02 Ecal Intermediate Board (EIB) are analyzed. After describing the experimental setup and the event samples, results concerning noise measurement, trigger efficiency and threshold accuracy are presented. They demonstrate that the EIB fulfils the physics requirements. Therefore the analog part of the trigger is validated, and hardware choices are also made towards the final device.Comment: 40 pages, 51 figures, AMS not

    HESS-II expected performance in the tens of GeV

    Get PDF
    International audienceBy the end of 2009 the four-telescopes-HESS-system will be upgraded to HESS-II with a new telescope with a 600 m2 mirror area and a very high resolution camera. HESS-II will allow to lower the energy threshold from 100 GeV to about 30 GeV and enhance the HESS sensitivity. Therefore AGNs at higher redshift could be detected and searches for new classes of very high energy gamma-ray emitters (pulsars, microquasars, GRB, and dark matter candidates) will also be possible. The evaluation of the instrument performance is presented in term of sensitivity, energy and angular resolutions, based on Monte Carlo simulation, using a multivariate analysis

    Sensitivity to the KARMEN Timing Anomaly at MiniBooNE

    Get PDF
    We present sensitivities for the MiniBooNE experiment to a rare exotic pion decay producing a massive particle, Q^0. This type of decay represents one possible explanation for the timing anomaly reported by the KARMEN collaboration. MiniBooNE will be able to explore an area of the KARMEN signal that has not yet been investigated

    A new look at the cosmic ray positron fraction

    Get PDF
    The positron fraction in cosmic rays was found to be a steadily increasing in function of energy, above \sim 10 GeV. This behaviour contradicts standard astrophysical mechanisms, in which positrons are secondary particles, produced in the interactions of primary cosmic rays during the propagation in the interstellar medium. The observed anomaly in the positron fraction triggered a lot of excitement, as it could be interpreted as an indirect signature of the presence of dark matter species in the Galaxy. Alternatively, it could be produced by nearby astrophysical sources, such as pulsars. Both hypotheses are probed in this work in light of the latest AMS-02 positron fraction measurements. The transport of the primary and secondary positrons in the Galaxy is described using a semi-analytic two-zone model. MicrOMEGAs is used to model the positron flux generated by dark matter species. The description of the positron fraction from astrophysical sources is based on the pulsar observations included in the ATNF catalogue. We find that the mass of the favoured dark matter candidates is always larger than 500 GeV. The only dark matter species that fulfils the numerous gamma ray and cosmic microwave background bounds is a particle annihilating into four leptons through a light scalar or vector mediator, with a mixture of tau (75%) and electron (25%) channels, and a mass between 0.5 and 1 TeV. The positron anomaly can also be explained by a single astrophysical source and a list of five pulsars from the ATNF catalogue is given. Those results are obtained with the cosmic ray transport parameters that best fit the B/C ratio. Uncertainties in the propagation parameters turn out to be very significant. In the WIMP annihilation cross section to mass plane for instance, they overshadow the error contours derived from the positron data.Comment: 20 pages, 16 figures, accepted for publication in A&A, corresponds to published versio

    Improved sensitivity of H.E.S.S.-II through the fifth telescope focus system

    Full text link
    The Imaging Atmospheric Cherenkov Telescope (IACT) works by imaging the very short flash of Cherenkov radiation generated by the cascade of relativistic charged particles produced when a TeV gamma ray strikes the atmosphere. This energetic air shower is initiated at an altitude of 10-30 km depending on the energy and the arrival direction of the primary gamma ray. Whether the best image of the shower is obtained by focusing the telescope at infinity and measuring the Cherenkov photon angles or focusing on the central region of the shower is a not obvious question. This is particularly true for large size IACT for which the depth of the field is much smaller. We address this issue in particular with the fifth telescope (CT5) of the High Energy Stereoscopic System (H.E.S.S.); a 28 m dish large size telescope recently entered in operation and sensitive to an energy threshold of tens of GeVs. CT5 is equipped with a focus system, its working principle and the expected effect of focusing depth on the telescope sensitivity at low energies (50-200 GeV) is discussed.Comment: In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil
    corecore