6 research outputs found

    Effect of cutting parameters on cutting temperature of TiAL6V4 alloy

    Get PDF
    A Finite Element Modeling (FEM) and Simulation was Used to Investigate the Effect of Tool Rake Angle, Cutting Speed and Feed Rate on the Cutting Temperature of Tial6v4 Alloy. the Purpose of this Study was to Find Proper Cutting Parameters for Machining of Titanium Alloy where Cutting Temperature was Lowest. A FEM Based on ABAQUS Software which Involves Jonson-Cook Material Model and Coulomb’s Friction Law was Applied to Simulate an Orthogonal Cutting Process. in this Simulation Work, a Range of Tool Rake Angle from 0° to 10°, a Range of Cutting Speed from 300 m/min to 600 m/min and a Range of Feed Rate between 0.1 Rev/mm and 0.25 Rev/mm were Investigated. the Simulation Results Indicated that Increase in Rake Angle Reduces Cutting Temperature while Increasing Cutting Speed and Feed Rate Increase the Cutting Temperature

    Effect of cutting parameters on tool-chip interface temperature in an orthogonal turning process

    Get PDF
    The aim of this paper is to investigate the effect of cutting speed and uncut chip thickness on cutting performance. A Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material mode and Coulombs friction law was used to simulate of High Speed Machining (HSM) of AISI 1045 steel. In this simulation work, feed rate ranging from 0.05 mm/rev to 0.13 mm/rev and cutting speed ranging from 200 m/min to 600 m/min at three different cutting speeds were investigated. From the simulation results it was observed that increasing feed rate and cutting speed lead to increase temperature and stress distribution at tool/chip interface. The results obtained from this study are highly essential to predict machining induced residual stresses and thermo-mechanical deformation related properties on the machined surface

    Finite element analysis of aluminum-Kevlar/Epoxy pressure vessel

    Get PDF
    In this present work, the composite pressure vessel type three has been investigated by finite element method (FEM). The aluminum pressure vessel reinforced with Kevlar/Epoxy (Aramid 149) was analyzed under internal pressure to predict the ultimate failure pressure of the vessel. Also the optimum winding angle which provides the highest strength for the vessel was determined by applying Tsai-Wu and Tsai-Hill failure theories. The asymmetric fiber orientation for six different winding angles was utilized to reinforce the aluminum vessel. The commercial code ABAQUS/CAE was employed to analyze the composite vessel. Results obtained from the simulation were in good consistency with the analytical and the experimental outcomes

    Finite element modeling and simulation of machining of titanium alloy and H13 tool steel using PCBN tool

    Get PDF
    This paper deals with finite element modeling (FEM) and simulation of machining of titanium alloy and H-13 tool steel. Titanium alloys are very suitable for airframe manufacture and aircraft as H-13 uses forging dies and machined die casting. The machinability of both metals was evaluated by high temperature and tool wear. Finite element simulation was performed with ABAQUS explicit software to predict cutting temperature and stress distribution during metal cutting process. The purpose of this study was evaluation the performance of PCBN cutting tool material on machining of titanium alloy and H-13. It was found that PCBN tool can resistant well against high thermal shocks, high temperature and stress distribution when machining difficult to cut materials. The results can give a better understanding of cutting tool material for metal cutting process

    Failure analysis of aluminum reinforced composite vessel

    Get PDF
    At this paper attempts have been made to determine the effects of internal pressure on the reinforced composite pressure vessel. Finite element analysis (FEA) along with the Tsai-Wu failure criterion was utilized to predict the failure pressure of the vessel and the optimum fiber angle orientation. Six layers of E-glass/Epoxy and Graphite/Epoxyfibers have been selected to reinforce the aluminium vessel. Fibers were oriented with six different winding angles of 300, 450, 550, 600, 750 and 900 at asymmetric fiber orientation. The commercial code ABAQUS CAE was employed to simulate the model and analyse the structure. Results were revealed that Graphite/Epoxy has higher strength in comparison with E-glass/Epoxy fiber. Also it was observed that for both composite materials 550fiber angle is the optimum winding angle. Results were compared to the experimental ones and there was a good agreement between them

    Finite element modeling of the effect of tool rake angle on cutting force and tool temperature during high speed machining of AISI 1045 steel

    Get PDF
    A finite element model (FEM) of an orthogonal metal-cutting process is used to study the influence of tool rake angle on the cutting force and tool temperature. The model involves Johnson-Cook material model and Coulomb’s friction law. A tool rake angle ranging from 0° to 20° and a cutting speed ranging from 300 to 600 m/min were considered in this simulation. The results of this simulation work are consistent optimum tool rake angle for high speed machining (HSM) of AISI 1045 medium carbon steel. It was observed that there was a suitable rake angle between 10° and 18° for cutting speeds of 300 and 433 m/min where cutting force and temperature were lowest. However, there was not optimum rake angle for cutting speeds of 550 and 600 m/min. This paper can contribute in optimization of cutting tool for metal cutting process
    corecore