870 research outputs found

    Striatal Dopamine and the Interface between Motivation and Cognition

    Get PDF
    Brain dopamine has long been known to be implicated in the domains of appetitive motivation and cognition. Recent work indicates that dopamine also plays a role in the interaction between appetitive motivation and cognition. Here we review this work. Animal work has revealed an arrangement of spiraling connections between the midbrain and the striatum that subserves a mechanism by which dopamine can direct information flow from ventromedial to more dorsal regions in the striatum. In line with current knowledge about dopamine's effects on cognition, we hypothesize that these striato-nigro-striatal connections provide the basis for functionally specific effects of appetitive motivation on cognition. One implication of this hypothesis is that appetitive motivation can induce cognitive improvement or impairment depending on task demands

    Prefrontal signals precede striatal signals for biased credit assignment in motivational learning biases

    Get PDF
    Actions are biased by the outcomes they can produce: Humans are more likely to show action under reward prospect, but hold back under punishment prospect. Such motivational biases derive not only from biased response selection, but also from biased learning: humans tend to attribute rewards to their own actions, but are reluctant to attribute punishments to having held back. The neural origin of these biases is unclear. Specifically, it remains open whether motivational biases arise primarily from the architecture of subcortical regions or also reflect cortical influences, the latter being typically associated with increased behavioral flexibility and control beyond stereotyped behaviors. Simultaneous EEG-fMRI allowed us to track which regions encoded biased prediction errors in which order. Biased prediction errors occurred in cortical regions (dorsal anterior and posterior cingulate cortices) before subcortical regions (striatum). These results highlight that biased learning is not a mere feature of the basal ganglia, but arises through prefrontal cortical contributions, revealing motivational biases to be a potentially flexible, sophisticated mechanism

    Striatal bold and midfrontal theta power express motivation for action

    Get PDF
    Action selection is biased by the valence of anticipated outcomes. To assess mechanisms by which these motivational biases are expressed and controlled, we measured simultaneous EEG-fMRI during a motivational Go/NoGo learning task (N = 36), leveraging the temporal resolution of EEG and subcortical access of fMRI. VmPFC BOLD encoded cue valence, importantly predicting trial-by-trial valence-driven response speed differences and EEG theta power around cue onset. In contrast, striatal BOLD encoded selection of active Go responses and correlated with theta power around response time. Within trials, theta power ramped in the fashion of an evidence accumulation signal for the value of making a "Go" response, capturing the faster responding to reward cues. Our findings reveal a dual nature of midfrontal theta power, with early components reflecting the vmPFC contribution to motivational biases, and late components reflecting their striatal translation into behavior, in line with influential recent "value of work" theories of striatal processing

    Top-Down Attentional Control in Parkinsonʼs Disease: Salient Considerations

    Get PDF
    Abstract ■ Cognitive dysfunction in Parkinsonʼs disease (PD) has been hypothesized to reflect a failure of cortical control. In keeping with this hypothesis, some of the cognitive deficits in PD resemble those seen in patients with lesions in the lateral pFC, which has been associated with top-down attentional control. However, there is no direct evidence for a failure of top-down control mechanisms in PD. Here we fill this gap by demonstrating disproportionate control by bottom-up attention to dimensional salience during attentional set shifting. Patients needed significantly more trials to criterion than did controls when shifting to a low-salient dimension while, remarkably, needing significantly fewer trials to criterion than did controls when shifting to a highsalient dimension. Thus, attention was captured by bottom-up attention to salient information to a greater extent in patients than in controls. The results provide a striking reinterpretation of prior set-shifting data and provide the first direct evidence for a failure of top-down attentional control, resembling that seen after catecholamine depletion in the pFC.

    Parallel cognitive maps for multiple knowledge structures in the hippocampal formation

    Get PDF
    The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information. However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al. (2017) that had previously revealed a map in the hippocampal formation coding for a newly learnt transition structure. Using functional magnetic resonance imaging adaptation analysis, we found that the degree of representational similarity in the bilateral hippocampus also decreased as a function of the semantic distance between presented objects. Importantly, while both map-like structures localized to the hippocampal formation, the semantic map was located in more posterior regions of the hippocampal formation than the transition structure and thus anatomically distinct. This finding supports the idea that the hippocampal-entorhinal system forms parallel cognitive maps that reflect the embedding of objects in diverse relational structures

    Parallel cognitive maps for multiple knowledge structures in the hippocampal formation

    Get PDF
    The hippocampal-entorhinal system uses cognitive maps to represent spatial knowledge and other types of relational information. However, objects can often be characterized by different types of relations simultaneously. How does the hippocampal formation handle the embedding of stimuli in multiple relational structures that differ vastly in their mode and timescale of acquisition? Does the hippocampal formation integrate different stimulus dimensions into one conjunctive map or is each dimension represented in a parallel map? Here, we reanalyzed human functional magnetic resonance imaging data from Garvert et al. (2017) that had previously revealed a map in the hippocampal formation coding for a newly learnt transition structure. Using functional magnetic resonance imaging adaptation analysis, we found that the degree of representational similarity in the bilateral hippocampus also decreased as a function of the semantic distance between presented objects. Importantly, while both map-like structures localized to the hippocampal formation, the semantic map was located in more posterior regions of the hippocampal formation than the transition structure and thus anatomically distinct. This finding supports the idea that the hippocampal-entorhinal system forms parallel cognitive maps that reflect the embedding of objects in diverse relational structures.publishedVersio

    The effects of an 8-week mindful eating intervention on anticipatory reward responses in striatum and midbrain

    Get PDF
    IntroductionAccumulating evidence suggests that increased neural responses during the anticipation of high-calorie food play an important role in the tendency to overeat. A promising method for counteracting enhanced food anticipation in overeating might be mindfulness-based interventions (MBIs). However, the neural mechanisms by which MBIs can affect food reward anticipation are unclear. In this randomized, actively controlled study, the primary objective was to investigate the effect of an 8-week mindful eating intervention on reward anticipation. We hypothesized that mindful eating would decrease striatal reward anticipation responses. Additionally, responses in the midbrain—from which the reward pathways originate—were explored.MethodsUsing functional magnetic resonance imaging (fMRI), we tested 58 healthy participants with a wide body mass index range (BMI: 19–35 kg/m2), motivated to change their eating behavior. During scanning they performed an incentive delay task, measuring neural reward anticipation responses to caloric and monetary cues before and after 8 weeks of mindful eating or educational cooking (active control).ResultsCompared with the educational cooking intervention, mindful eating affected neural reward anticipation responses, with reduced caloric relative to monetary reward responses. This effect was, however, not seen in the striatum, but only in the midbrain. The secondary objective was to assess temporary and long-lasting (1 year follow-up) intervention effects on self-reported eating behavior and anthropometric measures [BMI, waist circumference, waist-to-hip-ratio (WHR)]. We did not observe effects of the mindful eating intervention on eating behavior. Instead, the control intervention showed temporary beneficial effects on BMI, waist circumference, and diet quality, but not on WHR or self-reported eating behavior, as well as long-lasting increases in knowledge about healthy eating.DiscussionThese results suggest that an 8-week mindful eating intervention may have decreased the relative salience of food cues by affecting midbrain but not striatal reward responses, without necessarily affecting regular eating behavior. However, these exploratory results should be verified in confirmatory research.The primary and secondary objectives of the study were registered in the Dutch Trial Register (NTR): NL4923 (NTR5025)
    corecore