3,624 research outputs found

    Parametrized post-Newtonian virial theorem

    Full text link
    Using the parametrized post-Newtonian equations of hydrodynamics, we derive the tensor form of the parametrized post-Newtonian virial theorem.Comment: 10 pages, submitted to CQ

    Minimal Walking Technicolor: Set Up for Collider Physics

    Get PDF
    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find interesting relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently general such that the resulting model can be used to represent a generic walking technicolor theory not at odds with precision data.Comment: 42 pages, 3 figures. RevTex forma

    Renal Hyperfiltration and the Development of Microalbuminuria in Type 1 Diabetes

    Get PDF
    OBJECTIVE: The purpose of this study was to examine prospectively whether renal hyperfiltration is associated with the development of microalbuminuria in patients with type 1 diabetes, after taking into account known risk factors. RESEARCH DESIGN AND METHODS: The study group comprised 426 participants with normoalbuminuria from the First Joslin Kidney Study, followed for 15 years. Glomerular filtration rate was estimated by serum cystatin C, and hyperfiltration was defined as exceeding the 97.5th percentile of the sex-specific distribution of a similarly aged, nondiabetic population (134 and 149 ml/min per 1.73 m2 for men and women, respectively). The outcome was time to microalbuminuria development (multiple albumin excretion rate >30 μg/min). Hazard ratios (HRs) for microalbuminuria were calculated at 5, 10, and 15 years. RESULTS: Renal hyperfiltration was present in 24% of the study group and did not increase the risk of developing microalbuminuria. The unadjusted HR for microalbuminuria comparing those with and without hyperfiltration at baseline was 0.8 (95% CI 0.4–1.7) during the first 5 years, 1.0 (0.6–1.7) during the first 10 years, and 0.8 (0.5–1.4) during 15 years of follow-up. The model adjusted for baseline known risk factors including A1C, age at diagnosis of diabetes, diabetes duration, and cigarette smoking resulted in similar HRs. In addition, incorporating changes in hyperfiltration status during follow-up had minimal impact on the HRs for microalbuminuria. CONCLUSION;S Renal hyperfiltration does not have an impact on the development of microalbuminuria in type 1 diabetes during 5, 10, or 15 years of follow-up.National Institutes of Health Grant (DK 041526

    Binary Atomic Silicon Logic

    Full text link
    It has long been anticipated that the ultimate in miniature circuitry will be crafted of single atoms. Despite many advances made in scanned probe microscopy studies of molecules and atoms on surfaces, challenges with patterning and limited thermal stability have remained. Here we make progress toward those challenges and demonstrate rudimentary circuit elements through the patterning of dangling bonds on a hydrogen terminated silicon surface. Dangling bonds sequester electrons both spatially and energetically in the bulk band gap, circumventing short circuiting by the substrate. We deploy paired dangling bonds occupied by one movable electron to form a binary electronic building block. Inspired by earlier quantum dot-based approaches, binary information is encoded in the electron position allowing demonstration of a binary wire and an OR gate

    Localized modes in defective multilayer structures

    Full text link
    In this paper, the localized surface modes in a defective multilayer structure has been investigated. It is shown that the defective multilayer structures can support two different kind of localized modes depending on the position and the thickness of the defect layer. One of these modes is localized at the interface between the multilayer structure and a homogeneous medium (the so-called surface mode) and the other one is localized at the defect layer (defect localized mode). We reveal that the presence of defect layer pushes the dispersion curve of surface modes to the lower or the upper edge of the photonic bandgap depending on the homogeneous medium is a left-handed or right-handed medium (e.g. vacuum), respectively. So, the existence region of the surface modes restricted. Moreover, the effect of defect on the energy flow velocity of the surface modes is discussed.Comment: 5 pages, 7 figure

    Fabrication of Al-based composites reinforced with Al2O3-Tib2 ceramic composite particulates using vortex-casting method

    Get PDF
    Vortex casting is one of the simplest methods of producing metal matrix composites (MMCs). However, this simple method does have some drawbacks, which reduce the mechanical properties of the produced composites. In this study, we tried to modify the process of composite production before, during, and after the casting procedure. Low-cost Al2O3-TiB2 ceramic composite particles, which produced after combustion synthesis, were used as reinforcement. These powders, which are thermodynamically stable with molten aluminum below 900°C, were mixed with aluminum and magnesium powders before casting using ball milling and the mixed powders were injected into the molten metal (pure Al). This process was applied to enhance the wettability of ceramic particles with molten aluminum. After casting, warm equal channel angular pressing (ECAP) and hot extrusion processes were applied to investigate their effects on the mechanical properties of the final composites. It was revealed that both warm ECAP and hot extrusion have a strong influence on increasing the mechanical properties mainly due to decreasing the amount of porosities
    corecore