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Different theoretical and phenomenological aspects of the minimal and nonminimal walking techni-
color theories have recently been studied. The goal here is to make the models ready for collider
phenomenology. We do this by constructing the low energy effective theory containing scalars, pseudo-
scalars, vector mesons, and other fields predicted by the minimal walking theory. We construct their self-
interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely
modified to take into account the walking behavior of the underlying gauge theory, we find interesting
relations for the spin-one spectrum. We derive the electroweak parameters using the newly constructed
effective theory and compare the results with the underlying gauge theory. Our analysis is sufficiently
general such that the resulting model can be used to represent a generic walking technicolor theory not at
odds with precision data.
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I. INTRODUCTION

Recently we have uncovered the phase diagram of
strongly coupled theories [1,2] in the ladder approximation
[3,4], as a function of the number of flavors and colors,
with Dirac fermions transforming according to a given but
arbitrary representation of the underlying SU(N) gauge
group. Further studies of the conformal window and its
properties can be found in [5–7].

We have also identified a number of strongly coupled
theories which can dynamically break the electroweak
gauge symmetry and pass the precision tests. The system-
atic analysis started in [8] and was extended in [1]. A
related study can be found in [9]. First principle numerical
lattice computations have already initiated the study of the
proposed conformal window, and preliminary results just
appeared [10] which seem to support the near conformal
(walking) behavior of the simplest theory. These are initial
investigations on very small lattices which encourage one
to embark on a more serious study on larger lattices. The
simplest of these theories has fermions in the two index
symmetric representation of the gauge group, and is argued
to already walk with only two Dirac flavors and two colors
[2]. Therefore, when used to break the electroweak sym-
metry dynamically, we will call it the minimal walking
technicolor (MWT) model. This extension of the standard
model passes the electroweak precision constraints [8]
while displaying some interesting features. For example,
it allows for a successful unification of the standard model
couplings at the one loop level [11]. Also interesting types
of dark matter components [12–14] can be envisioned. The

walking dynamics was first introduced in [15–20] to ex-
plain the breaking of the electroweak theory.

Here we take our phenomenological program one step
closer to collider phenomenology by constructing the the-
ory at the underlying and effective Lagrangian level. We
include the relevant fields which can be discovered at
collider experiments, with their self-interactions as well
as the interactions with the standard model fields. We
provide the link with the underlying gauge theory via the
time-honored Weinberg sum rules (WSR)s [21], in case of
running or walking dynamics. By running dynamics here,
we mean that the coupling constant of the associated
asymptotically free gauge theory has a dependence as a
function of energy similar to the one in quantum chromo-
dynamics. In the walking dynamics regime the coupling
constant is almost constant for a wide range of energy
before resuming the running behavior at very high ener-
gies, higher than the scale below which chiral symmetry
breaking occurs. In order to implement the walking dy-
namics, we use and generalize the results presented in [22].
This link allows us to provide important phenomenological
relations for the spectrum of the axial and vector type spin-
one mesons. We find that light vector mesons (around
1 TeV) are compatible only within the walking regime if
one requires simultaneously that the underlying strongly
coupled theory leads to an S parameter [23,24] smaller
than the one associated to the first technicolor models
[which were based on an SU(3) gauge theory with two
Dirac techniflavors [25] ]. We also show how naturally the
walking dynamics merges into the running one.

Our analysis and effective Lagrangian are sufficiently
general to be applicable to the vast majority of models of
dynamical electroweak symmetry breaking in agreement
with the precision tests, and for which a strongly coupled
four-dimensional gauge theory underlies the dynamics.
Since the global symmetry is SU(4) for the MWT, one
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can easily reduce our model to the case of an SU�2�L �
SU�2�R chiral symmetry. For certain values of the cou-
plings of the low energy effective theory—before impos-
ing the generalized WSRs—one recovers the BESS
models [26].

Walking dynamics differs from the QCD-like running
behavior because of a nearby infrared (IR) fixed point
which dominates the low energy dynamics. The physics
of the fixed point theory per se is very interesting. If one
assumes the existence of a theory with an actual IR fixed
point coupled to a nonconformal theory (such as the stan-
dard model), in the way described recently by Georgi
[27,28], this leads to interesting phenomenology [29–
32]. The presence of a conformal symmetry signals itself
in a way that formally resembles the production of a non-
integer number of massless invisible particles, where the
noninteger number is nothing but the scale dimension of
the conformal-sector operator, which is weakly coupled to
the standard model operators. We expect, however, follow-
ing Ref. [33], that the coupling with the standard model
fields will push the unparticle sector away from the IR
fixed point. If this is the case, in practice one will observe a
walking dynamics in certain sectors of the theory, such as,
for example, the electroweak symmetry breaking sector.
Our model should then be a reasonable description of a
near conformal dynamics associated to this sector.

The rather comprehensive model we are going to de-
velop in the following sections has been conceived in a way
to ease its implementation on computer programs aiming
to provide interesting experimental signals for the physics
at colliders.

II. THE UNDERLYING LAGRANGIAN FOR
MINIMAL WALKING TECHNICOLOR

The new dynamical sector we consider, which underlies
the Higgs mechanism, is an SU(2) technicolor gauge the-
ory with two adjoint technifermions [2]. The theory is
asymptotically free if the number of flavors Nf is less
than 2.75.

The two adjoint fermions may be written as

 Qa
L �

Ua

Da

� �
L
; Ua

R; D
a
R; a � 1; 2; 3; (1)

with a being the adjoint color index of SU(2). The left-
handed fields are arranged in three doublets of the SU�2�L
weak interactions in the standard fashion. The condensate
is h �UU� �DDi which correctly breaks the electroweak
symmetry.

The model as described so far suffers from the Witten
topological anomaly [34]. However, this can easily be
solved by adding a new weakly charged fermionic doublet
which is a technicolor singlet [8]. Schematically,

 LL �
N
E

� �
L
; NR; ER: (2)

In general, the gauge anomalies cancel using the following
generic hypercharge assignment:

 Y�QL� �
y
2
; Y�UR; DR� �

�
y� 1

2
;
y� 1

2

�
; (3)

 Y�LL� � �3
y
2
; Y�NR; ER� �

�
�3y� 1

2
;
�3y� 1

2

�
;

(4)

where the parameter y can take any real value [8]. In our
notation the electric charge isQ � T3 � Y, where T3 is the
weak isospin generator. One recovers the SM hypercharge
assignment for y � 1=3.

To discuss the symmetry properties of the theory, it is
convenient to use the Weyl basis for the fermions and
arrange them in the following vector transforming accord-
ing to the fundamental representation of SU(4):

 Q �

UL

DL

�i�2U�R
�i�2D�R

0
BBB@

1
CCCA; (5)

where UL and DL are the left-handed techniup and techni-
down, respectively, and UR and DR are the corresponding
right-handed particles. Assuming the standard breaking to
the maximal diagonal subgroup, the SU(4) symmetry spon-
taneously breaks to SO(4). Such a breaking is driven by the
following condensate:

 hQ�
i Q

�
j ���E

iji � �2h �URUL � �DRDLi; (6)

where the indices i, j � 1; . . . ; 4 denote the components of
the tetraplet of Q, and the Greek indices indicate the
ordinary spin. The matrix E is a 4� 4 matrix defined in
terms of the 2-dimensional unit matrix as

 E �
0 1

1 0

� �
: (7)

We follow the notation of Wess and Bagger [35] ��� �
�i�2

�� and hU�
LUR

�����i � �h �URULi. A similar expres-
sion holds for the D techniquark. The above condensate is
invariant under an SO(4) symmetry. This leaves us with
nine broken generators with associated Goldstone bosons.

Replacing the Higgs sector of the SM with the MWT the
Lagrangian now reads
 

LH ! �
1
4F

a
��F

a�� � i �QL��D�QL � i �UR��D�UR

� i �DR�
�D�DR � i �LL�

�D�LL � i �NR�
�D�NR

� i �ER�
�D�ER (8)

with the technicolor field strength F a
�� � @�Aa

� �

@�A
a
� � gTC�

abcAb
�A

c
�, a, b, c � 1; . . . ; 3. For the

left-handed techniquarks the covariant derivative is
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 D�Q
a
L �

�
�ac@� � gTCA

b
��

abc � i
g
2
~W� � ~	�

ac

� ig0
y
2
B��ac

�
Qc

L: (9)

A� are the technigauge bosons, W� are the gauge bosons
associated to SU�2�L, and B� is the gauge boson associated
to the hypercharge. 	a are the Pauli matrices and �abc is the
fully antisymmetric symbol. In the case of right-handed
techniquarks, the third term containing the weak interac-
tions disappears and the hypercharge y=2 has to be re-
placed according to whether it is an up or down
techniquark. For the left-handed leptons, the second term
containing the technicolor interactions disappears and y=2
changes to �3y=2. Only the last term is present for the
right-handed leptons with an appropriate hypercharge
assignment.

III. LOW ENERGY THEORY FOR MWT

We construct the effective theory for MWT including
composite scalars and vector bosons, their self-
interactions, and their interactions with the electroweak
gauge fields and the standard model fermions.

A. Scalar sector

The relevant effective theory for the Higgs sector at the
electroweak scale consists, in our model, of a composite
Higgs and its pseudoscalar partner, as well as nine pseu-
doscalar Goldstone bosons and their scalar partners. These
can be assembled in the matrix

 M �
�
�� i�

2
�

���
2
p
�i�a � ~�a�Xa

�
E; (10)

which transforms under the full SU(4) group according to

 M ! uMuT; with u 2 SU�4�: (11)

The Xa’s, a � 1; . . . ; 9 are the generators of the SU(4)
group which do not leave the vacuum expectation value
(VEV) of M invariant

 hMi �
v
2
E: (12)

Note that the notation used is such that � is a scalar while
the �a’s are pseudoscalars. It is convenient to separate the
15 generators of SU(4) into the six that leave the vacuum
invariant, Sa, and the remaining nine that do not, Xa. Then
the Sa generators of the SO(4) subgroup satisfy the relation

 SaE� ESaT � 0; with a � 1; . . . ; 6; (13)

so that uEuT � E, for u 2 SO�4�. The explicit realization
of the generators is shown in Appendix A.

Notice that it is necessary to introduce the ‘‘tilde’’ fields
in the matrix M when realizing the global symmetry line-
arly. In fact, it can easily be shown that the matrix

 M �
�
�
2
� i

���
2
p

�aXa
�
E

is not invariant in form under a general SU(4) transforma-
tion, but only under transformations of the unbroken SO(4)
subgroup. This is in contrast to the case of an SU�2�L �
SU�2�R chiral group, whose minimal form involves a scalar
Higgs and three pseudoscalar Goldstone bosons only, but is
similar to the case of an SU�3�L � SU�3�R chiral group.
With the tilde fields included, the matrix M is invariant in
form under U�4� 	 SU�4� � U�1�A, rather than just SU(4).
However, the U�1�A axial symmetry is anomalous, and is
therefore broken at the quantum level.

The connection between the composite scalars and the
underlying techniquarks can be derived from the trans-
formation properties under SU(4), by observing that the
elements of the matrix M transform like techniquark bi-
linears:

 Mij 
Q
�
i Q

�
j "�� with i; j � 1; . . . ; 4: (14)

Using this expression, and the basis matrices given in
Appendix A, the scalar fields can be related to the wave
functions of the techniquark bound states. This gives the
following charge eigenstates:

 v�H	�
 �UU� �DD; �
 i� �U�5U� �D�5D�;

A0	 ~�3
 �UU� �DD; �0	�3
 i� �U�5U� �D�5D�;

A� 	
~�1� i ~�2���

2
p 
 �DU; �� 	

�1� i�2���
2
p 
 i �D�5U;

A� 	
~�1� i ~�2���

2
p 
 �UD; �� 	

�1� i�2���
2
p 
 i �U�5D;

(15)

for the technimesons, and

 �UU 	
�4 � i�5 ��6 � i�7

2

UTCU;

�DD 	
�4 � i�5 ��6 � i�7

2

DTCD;

�UD 	
�8 � i�9���

2
p 
UTCD;

~�UU 	
~�4 � i ~�5 � ~�6 � i ~�7

2

 iUTC�5U;

~�DD 	
~�4 � i ~�5 � ~�6 � i ~�7

2

 iDTC�5D;

~�UD 	
~�8 � i ~�9���

2
p 
 iUTC�5D;

(16)

for the technibaryons, where U 	 �UL; UR�
T and D 	

�DL; DR�
T are Dirac technifermions, and C is the charge

conjugation matrix, needed to form Lorentz-invariant ob-
jects. To these technibaryon charge eigenstates we must
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add the corresponding charge conjugate states (e.g.
�UU ! � �U �U).

The electroweak subgroup can be embedded in SU(4), as
explained in detail in [36]. Here SO(4) acts as a vectorial
subgroup, in the sense that this is the diagonal subgroup to
which SU(4) is maximally broken. Based on this, we can
say that the generators Sa, with a � 1, 2, 3, form a vecto-
rial SU(2) subgroup of SU(4), which is henceforth denoted
by SU�2�V, while S4 forms a U�1�V subgroup. The Sa

generators, with a � 1; . . . ; 4, together with the Xa gener-
ators, with a � 1, 2, 3, generate an SU�2�L � SU�2�R �
U�1�V algebra. This is easily seen by changing generator
basis from �Sa; Xa� to �La; Ra�, where

 La 	
Sa � Xa���

2
p �

	a
2 0
0 0

� �
;

� RaT 	
Sa � Xa���

2
p �

0 0
0 � 	aT

2

� �
;

(17)

with a � 1, 2, 3. The electroweak gauge group is then
obtained by gauging SU�2�L, and the U�1�Y subgroup of
SU�2�R � U�1�V, where

 Y � �R3T �
���
2
p
YVS

4; (18)

and YV is the U�1�V charge. For example, from Eqs. (3) and
(4) we see that YV � y for the techniquarks, and YV �
�3y for the new leptons. As SU(4) spontaneously breaks to
SO(4), SU�2�L � SU�2�R breaks to SU�2�V. As a conse-
quence, the electroweak symmetry breaks to U�1�Q, where

 Q �
���
2
p
S3 �

���
2
p
YVS4: (19)

Moreover, the SU�2�V group, being entirely contained in
the unbroken SO(4), acts as a custodial isospin, which
ensures that the 
 parameter is equal to one at tree level.

The electroweak covariant derivative for the M matrix is

 D�M � @�M� ig�G��y�M�MGT
��y��; (20)

where

 gG��YV� � gWa
�La � g0B�Y

� gWa
�L

a � g0B���R
3T �

���
2
p
YVS

4�: (21)

Notice that in the last equation G��YV� is written for a
general U�1�V charge YV, while in Eq. (20) we have to take
the U�1�V charge of the techniquarks, YV � y, since these
are the constituents of the matrix M, as explicitly shown in
Eq. (14).

Three of the nine Goldstone bosons associated with the
broken generators become the longitudinal degrees of free-
dom of the massive weak gauge bosons, while the extra six
Goldstone bosons will acquire a mass due to extended
technicolor interactions (ETC) as well as the electroweak
interactions per se. Using a bottom up approach, we will
not commit to a specific ETC theory but limit ourself to
introduce the minimal low energy operators needed to

construct a phenomenologically viable theory. The new
Higgs Lagrangian is

 L Higgs �
1
2 Tr�D�MD�My� �V �M� �LETC; (22)

where the potential reads

 V �M� � �
m2

2
Tr�MMy� �

�
4

Tr�MMy�2

� �0 Tr�MMyMMy� � 2�00�det�M�

� det�My��; (23)

and LETC contains all terms which are generated by the
ETC interactions, and not by the chiral symmetry breaking
sector. Notice that the determinant terms (which are re-
normalizable) explicitly break the U�1�A symmetry, and
give mass to �, which would otherwise be a massless
Goldstone boson. While the potential has a (spontaneously
broken) SU(4) global symmetry, the largest global sym-
metry of the kinetic term is SU�2�L � U�1�R � U�1�V
[where U�1�R is the 	3 part of SU�2�R], and becomes
SU(4) in the g, g0 ! 0 limit. Under electroweak gauge
transformations, M transforms like

 M�x� ! u�x; y�M�x�uT�x; y�; (24)

where

 u�x;YV� � exp�i�a�x�La � i��x���R3T �
���
2
p
YVS4��;

(25)

and YV � y. We explicitly break the SU(4) symmetry in
order to provide mass to the Goldstone bosons which are
not eaten by the weak gauge bosons. We, however, pre-
serve the full SU�2�L � SU�2�R � U�1�V subgroup of
SU(4), since breaking SU�2�R � U�1�V to U�1�Y would
result in a potentially dangerous violation of the custodial
isospin symmetry. Assuming parity invariance we write

 L ETC �
m2

ETC

4
Tr�MBMyB�MMy� � � � � ; (26)

where the ellipses represent possible higher dimensional
operators, and B 	 2

���
2
p
S4 commutes with the SU�2�L �

SU�2�R � U�1�V generators.
The potential V �M� is SU(4) invariant. It produces a

VEV which parametrizes the techniquark condensate, and
spontaneously breaks SU(4) to SO(4). In terms of the
model parameters the VEV is

 v2 � h�i2 �
m2

�� �0 � �00
; (27)

while the Higgs mass is

 M2
H � 2m2: (28)

The linear combination �� �0 � �00 corresponds to the
Higgs self-coupling in the SM. The three pseudoscalar
mesons �
, �0 correspond to the three massless
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Goldstone bosons which are absorbed by the longitudinal
degrees of freedom of the W
 and Z boson. The remaining
six uneaten Goldstone bosons are technibaryons, and all
acquire tree-level degenerate mass through, not yet speci-
fied, ETC interactions:

 M2
�UU
� M2

�UD
� M2

�DD
� m2

ETC: (29)

The remaining scalar and pseudoscalar masses are

 M2
� � 4v2�00 M2

A
 � M2
A0 � 2v2��0 � �00� (30)

for the technimesons, and

 M2
~�UU
� M2

~�UD
� M2

~�DD
� m2

ETC � 2v2��0 � �00�; (31)

for the technibaryons. To gain insight on some of the mass
relations one can use [37].

B. Vector bosons

The composite vector bosons of a theory with a global
SU(4) symmetry are conveniently described by the four-
dimensional traceless Hermitian matrix

 A� � Aa�Ta; (32)

where Ta are the SU(4) generators: Ta � Sa, for a �
1; . . . ; 6, and Ta�6 � Xa, for a � 1; . . . ; 9. Under an arbi-
trary SU(4) transformation, A� transforms like

 A� ! uA�uy; where u 2 SU�4�: (33)

Equation (33), together with the tracelessness of the matrix
A�, gives the connection with the techniquark bilinears:

 A�;ji 
Q
�
i �

�
� _�

�Q _�;j � 1
4�

j
iQ

�
k �

�
� _�

�Q _�;k: (34)

Then we find the following relations between the charge
eigenstates and the wave functions of the composite ob-
jects:

 v0� 	 A3� 
 �U��U� �D��D;

a0� 	 A9� 
 �U���5U� �D���5D;

v�� 	
A1� � iA2����

2
p 
 �D��U;

a�� 	
A7� � iA8����

2
p 
 �D���5U;

v�� 	
A1� � iA2����

2
p 
 �U��D;

a�� 	
A7� � iA8����

2
p 
 �U���5D;

v4� 	 A4� 
 �U��U � �D��D;

(35)

for the vector mesons, and

 

x�UU 	
A10� � iA11� � A12� � iA13�

2

UTC���5U;

x�DD 	
A10� � iA11� � A12� � iA13�

2

DTC���5D;

x�UD 	
A14� � iA15����

2
p 
DTC���5U;

s�UD 	
A6� � iA5����

2
p 
UTC��D; (36)

for the vector baryons.
There are different approaches on how to introduce

vector mesons at the effective Lagrangian level. At the
tree level they are all equivalent. The main differences
emerge when exploring quantum corrections.

In Appendix B we will show how to introduce the vector
mesons in a way that renders the following Lagrangian
amenable to loop computations. Based on these premises,
the kinetic Lagrangian is
 

Lkinetic � �
1
2 Tr� ~W��

~W��� � 1
4B��B

�� � 1
2 Tr�F��F���

�m2
A Tr�C�C��; (37)

where ~W�� and B�� are the ordinary field strength tensors
for the electroweak gauge fields. Strictly speaking, the
terms above are not only kinetic ones since the
Lagrangian contains a mass term as well as self-
interactions. The tilde on Wa indicates that the associated
states are not yet the standard model weak triplets: in fact
these states mix with the composite vectors to form mass
eigenstates corresponding to the ordinary W and Z bosons.
F�� is the field strength tensor for the new SU(4) vector
bosons,

 F�� � @�A� � @�A� � i~g�A�; A��; (38)

and the vector field C� is defined by

 C� 	 A� �
g
~g
G��y�: (39)

As shown in Appendix B this is the appropriate linear
combination to take which transforms homogeneously
under the electroweak symmetries:

 C��x� ! u�x; y�C��x�u�x; y�y; (40)

where u�x;YV� is given by Eq. (25). (Once again, the
specific assignment YV � y, due to the fact that the com-
posite vectors are built out of techniquark bilinears.) The
mass term in Eq. (37) is gauge invariant (see Appendix B),
and gives a degenerate mass to all composite vector bo-
sons, while leaving the actual gauge bosons massless. (The
latter acquire mass as usual from the covariant derivative
term of the scalar matrix M, after spontaneous symmetry
breaking.)

The C� fields couple with M via gauge invariant opera-
tors. Up to dimension four operators the Lagrangian is (see
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Appendix B for a more general treatment)
 

LM-C � ~g2r1 Tr�C�C
�MMy� � ~g2r2 Tr�C�MC

�TMy�

� i~gr3 Tr�C��M�D�M�y � �D�M�My��

� ~g2sTr�C�C
��Tr�MMy�: (41)

The dimensionless parameters r1, r2, r3, s parametrize the
strength of the interactions between the composite scalars
and vectors in units of ~g, and are therefore naturally
expected to be of order one. However, notice that for r1 �
r2 � r3 � 0 the overall Lagrangian possesses two inde-
pendent SU�2�L � U�2�R � U�1�V global symmetries. One
for the terms involving M and one for the terms involving
C� [38]. The Higgs potential only breaks the symmetry
associated with M, while leaving the symmetry in the
vector sector unbroken. This enhanced symmetry guaran-
tees that all r-terms are still zero after loop corrections.
Moreover, if one chooses r1, r2, r3 to be small the near
enhanced symmetry will protect these values against large
corrections [26,36].

We can also construct dimension four operators includ-
ing only C� fields. These new operators will not affect our
analysis but will be relevant when investigating corrections
to the trilinear and quadrilinear gauge bosons interactions.
We will include these terms in Appendix C.

C. Fermions and Yukawa interactions

The fermionic content of the effective theory consists of
the standard model quarks and leptons, the new lepton
doublet L � �N;E� introduced to cure the Witten anomaly,
and a composite techniquark-technigluon doublet.

We now consider the limit according to which the SU(4)
symmetry is, at first, extended to ordinary quarks and
leptons. Of course, we will need to break this symmetry
to accommodate the standard model phenomenology. We
start by arranging the SU(2) doublets in SU(4) multiplets
as we did for the techniquarks in Eq. (5). We therefore
introduce the four-component vectors qi and li,

 qi �

uiL
diL

�i�2ui �R

�i�2di �R

0
BBB@

1
CCCA; li �

�iL
eiL

�i�2�i �R

�i�2ei �R

0
BBB@

1
CCCA; (42)

where i is the generation index. Note that such an extended
SU(4) symmetry automatically predicts the presence of a
right-handed neutrino for each generation. In addition to
the standard model fields, there is an SU(4) multiplet for
the new leptons,

 L �

NL

EL

�i�2NR
�

�i�2ER
�

0
BBB@

1
CCCA; (43)

and a multiplet for the techniquark-technigluon bound

state,

 

~Q �

~UL
~DL

�i�2 ~U�R
�i�2 ~D�R

0
BBB@

1
CCCA: (44)

With this arrangement, the electroweak covariant deriva-
tive for the fermion fields can be written

 D� � @� � igG��YV�; (45)

where YV � 1=3 for the quarks, YV � �1 for the leptons,
YV � �3y for the new lepton doublet, and YV � y for the
techniquark-technigluon bound state. One can check that
these charge assignments give the correct electroweak
quantum numbers for the standard model fermions. In
addition to the covariant derivative terms, we should add
a term coupling ~Q to the vector field C�, which transforms
globally under electroweak gauge transformations. Such a
term naturally couples the composite fermions to the com-
posite vector bosons which otherwise would only feel the
week interactions. Based on this, we write the following
gauge part of the fermion Lagrangian:

 L fermion � i �qi� ���; _��D�qi� � i�l
i
_� ���; _��D�li�

� i �L _� ���; _��D�L� � i
�~Q _� ���; _��D�

~Q�

� x �~Q _� ���; _��C� ~Q�: (46)

The terms coupling the standard model fermions or the
new leptons to C� are in general not allowed. In fact under
electroweak gauge transformations any four-component
fermion doublet  transforms like

  ! u�x;YV� ; (47)

and from Eq. (40) we see that a term like  ���
� _�
C� � _� is

only invariant if YV � y. Then we can distinguish two
cases. First, we can have y � 1=3 and y � �1, in which
case  ���

� _�
C� � _� is only invariant for  � ~Q. Interaction

terms of the standard model fermions with components of
C� are still possible, but these would break the SU(4)
chiral symmetry even in the limit in which the electroweak
gauge interactions are switched off. Second, we can have
y � 1=3 or y � �1. Then  ���

� _�
C� � _� is not only invari-

ant for  � ~Q, but also for either  � qi or  � li, re-
spectively. In the last two cases, however, the
corresponding interactions are highly suppressed, since
these give rise to anomalous couplings of the light fermions
with the standard model gauge bosons, which are tightly
constrained by experiments.

We now turn to the fundamental issue of providing
masses to ordinary fermions. Many extensions of techni-
color have been suggested in the literature to address this
problem. Some of the extensions use another strongly
coupled gauge dynamics, others introduce fundamental
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scalars. Many variants of the schemes presented above
exist and a review of the major models is the one by Hill
and Simmons [39]. At the moment there is not yet a
consensus on which is the correct ETC. To keep the
number of fields minimal, we make the most economical
ansatz; i.e., we parametrize our ignorance about a complete
ETC theory by simply coupling the fermions to our low
energy effective Higgs. This simple construction mini-
mizes the flavor changing neutral currents problem. It is
worth mentioning that it is possible to engineer a schematic
ETC model proposed first by Randall in [40] and adapted
for the MWT in [41] for which the effective theory pre-
sented in the main text can be considered a minimal
description [42].

Depending on the value of y for the techniquarks, we can
write different Yukawa interactions which couple the stan-
dard model fermions to the matrix M. Let  denote either
qi or li. If  and the techniquark multiplets Qa have the
same U�1�V charge, then the Yukawa term

 �  TM� � H:c: (48)

is gauge invariant, as one can check explicitly from
Eqs. (24) and (47). Otherwise, if  and Qa have different
U�1�V charges, we can only write a gauge invariant
Lagrangian with the off-diagonal terms of M, which con-
tain the Higgs and the Goldstone bosons:

 �  TM�off � H:c: (49)

In fact Moff has no U�1�V charge, since

 S4Moff �MoffS
4T � 0: (50)

The last equation implies that the U�1�V charges of  T and
 cancel in Eq. (49). The latter is actually the only viable
Yukawa Lagrangian for the new leptons, since the corre-
sponding U�1�V charge is YV � �3y � y, and for the
ordinary quarks, since Eq. (48) contains qq terms which
are not color singlets.

We notice however that neither Eq. (48) nor Eq. (49) are
phenomenologically viable yet, since they leave the
SU�2�R subgroup of SU(4) unbroken, and the correspond-
ing Yukawa interactions do not distinguish between the up-
type and the down-type fermions. In order to prevent this
feature, and recover agreement with the experimental in-
put, we break the SU�2�R symmetry to U�1�R by using the
projection operators PU and PD, where

 PU �
1 0
0 1�	3

2

� �
; PD �

1 0
0 1�	3

2

� �
: (51)

Then, for example, Eq. (48) should be replaced by

 �  T�PUM
�PU� �  

T�PDM
�PD� � H:c: (52)

For illustration we distinguish two different cases for our
analysis, y � �1 and y � �1, and write the corresponding
Yukawa interactions:

(i) y � �1. In this case we can only form gauge invari-
ant terms with the standard model fermions by using
the off-diagonal M matrix. Allowing for both N � E
and ~U� ~D mass splitting, we write

 L Yukawa � �y
ij
u qiT�PUM

�
offPU�q

j

� yijd q
iT�PDM�offPD�q

j

� yij� liT�PUM�offPU�l
j

� yije liT�PDM
�
offPD�l

j

� yNLT�PUM�offPU�L

� yEL
T�PDM

�
offPD�L

� y ~U
~QT�PUM

�PU� ~Q

� y ~D
~QT�PDM�PD� ~Q� H:c:; (53)

where yiju , yijd , yij� , yije are arbitrary complex matrices,
and yN, yE, y ~U, y ~D are complex numbers.
Note that the underlying strong dynamics already
provides a dynamically generated mass term for ~Q
of the type

 k ~QTM� ~Q� H:c:; (54)

with k a dimensionless coefficient of order one and
entirely fixed within the underlying theory. The
splitting between the up- and down-type techni-
quarks is due to physics beyond the technicolor
interactions [43]. Hence, the Yukawa interactions
for ~Q must be interpreted as already containing the
dynamical generated mass term.

(ii) y � �1. In this case we can form gauge invariant
terms with the standard model leptons and the full M
matrix:

 L Yukawa � �y
ij
u qiT�PUM

�
offPU�q

j

� yijd q
iT�PDM

�
offPD�q

j

� yij� liT�PUM�PU�lj

� yije liT�PDM�PD�lj

� yNL
T�PUM

�
offPU�L

� yELT�PDM�offPD�L

� y ~U
~QT�PUM

�PU� ~Q

� y ~D
~QT�PDM

�PD� ~Q� H:c: (55)

Here we are assuming Dirac masses for the neutrinos, but
we can easily add also Majorana mass terms. At this point,
one can exploit the symmetries of the kinetic terms to
induce a Glashow-Iliopoulos-Maiani mechanism, which
works out exactly like in the standard model. Therefore,
in both Eqs. (53) and (55) we can assume yiju , yijd , yij� , yije to
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be diagonal matrices, and replace the diL and �iL fields, in
the kinetic terms, with Vijq d

j
L and Vijl �

j
L, respectively,

where Vq and Vl are the mixing matrices.
When y � �1 ~Q has the same quantum numbers of the

ordinary leptons, except for the technibaryon number. If
the technibaryon number is violated, they can mix with the
ordinary leptons behaving effectively as a fourth genera-
tion leptons [see Eq. (55)]. However, this will reintroduce,
in general, anomalous couplings with intermediate gauge
bosons for the ordinary fermions and hence we assume the
mixing to be small.

IV. WEINBERG SUM RULES AND
ELECTROWEAK PARAMETERS

The effective theory described until now has a number of
free parameters which are fixed once the associated under-
lying dynamics is specified. Conversely, the low effective
theory introduced above encompasses different underlying
realizations with the same symmetry pattern. In the follow-
ing, we partially reduce the arbitrariness of the Lagrangian
by assuming that the underlying dynamics is the one of a
four-dimensional asymptotically free gauge theory, with
only fermionic matter fields transforming according to a
given but otherwise arbitrary representation of the gauge
group. The MWT is automatically part of this set of
theories. We will use the Weinberg sum rules (WSR) as
the main ingredient to reduce the number of unknown
parameters in the theory. We will then compute the uni-
versal corrections in the effective theory and compare these
to the ones estimated in the underlying theory. The latter
step is taken only for the MWT theory but it straightfor-
wardly generalizes to any walking theory. We also use the
results found in [22] which allow us to treat walking and
running theories in a unified way.

A. Weinberg sum rules

Our effective theory is meant to be associated to an
underlying strongly coupled theory. Hence, we relate
some of the parameters in the effective theory via the
WSR. These are linked to the two point vector-vector
minus axial-axial vacuum polarization amplitude, which
is known to be sensitive to chiral symmetry breaking. We
define

 i�a;b
���q� 	

Z
d4xe�iqx�hJa�;V�x�J

b
�;V�0�i

� hJa�;A�x�J
b
�;A�0�i�; (56)

within the underlying strongly coupled gauge theory,
where

 �a;b
���q� � �q�q� � g��q

2��ab��q2�: (57)

Here a, b � 1; . . . ; N2
f � 1, label the flavor currents and the

SU�Nf� generators are normalized according to

Tr�TaTb� � �1=2��ab. The function ��q2� obeys the un-
subtracted dispersion relation

 

1

�

Z 1
0
ds

Im��s�

s�Q2 � ��Q2�; (58)

where Q2 � �q2 > 0, and the constraint �Q2��Q2�> 0
holds for 0<Q2 <1 [44]. The discussion above is for the
standard chiral symmetry breaking pattern SU�Nf� �

SU�Nf� ! SU�Nf� but it is generalizable to any breaking
pattern.

Since we are imagining the underlying theory to be
asymptotically free, the behavior of ��Q2� at asymptoti-
cally high momenta is the same as in ordinary QCD, i.e. it
scales like Q�6 [45]. Expanding the left-hand side of the
dispersion relation thus leads to the two conventional
spectral function sum rules

 

1

�

Z 1
0
ds Im��s� � 0 and

1

�

Z 1
0
dss Im��s� � 0:

(59)

Walking dynamics affects only the second sum rule [22]
which is more sensitive to large but not asymptotically
large momenta due to the fact that the associated integrand
contains an extra power of s.

We now saturate the absorptive part of the vacuum
polarization. We follow Ref. [22] and hence divide the
energy range of integration in three parts. The first one is
the resonance part which we approximate by the vector and
axial mesons as well as the Goldstone bosons. The second
one (the continuum region) where the walking dynamics
takes over and which extends up to the scale above which
the underlying coupling constant drops like in a QCD-like
theory.

The first WSR implies

 F2
V � F

2
A � F2

�; (60)

where F2
V and F2

A are the vector and axial mesons decay
constants. This sum rule holds for walking and running
dynamics. A more general representation of the resonance
spectrum would, in principle, replace the left-hand side of
this relation with a sum over vector and axial states.
However, the heavier resonances should not be included
since in the approach of [22] the walking dynamics in the
intermediate energy range is already approximated by the
exchange of underlying fermions. The walking is encapsu-
lated in the dynamical mass dependence on the momentum
dictated by the gauge theory. The introduction of heavier
resonances is, in practice, double counting. Note that the
approach is in excellent agreement with the Weinberg
approximation for QCD, since in this case, the approxima-
tion automatically returns the known results.

The second sum rule receives important contributions
from throughout the near conformal region and can be
expressed in the form of
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 F2
VM

2
V � F

2
AM

2
A � a

8�2

d�R�
F4
�; (61)

where a is expected to be positive and O�1� and d�R� is the
dimension of the representation of the underlying fermi-
ons. We have generalized the result of Ref. [22] to the case
in which the fermions belong to a generic representation of
the gauge group. In the case of running dynamics the right-
hand side of the previous equation vanishes.

We stress that a is a nonuniversal quantity depending on
the details of the underlying gauge theory. A reasonable
measure of how large a can be is given by a function of the
amount of walking which is the ratio of the scale above
which the underlying coupling constant starts running
divided by the scale below which chiral symmetry breaks.

B. Relating WSRs to the effective theory and
S parameter

The S parameter is related to the absorptive part of the
vector-vector minus axial-axial vacuum polarization as
follows:

 S � 4
Z 1

0

ds
s

Im ���s� � 4�
�
F2
V

M2
V

�
F2
A

M2
A

�
; (62)

where Im �� is obtained from Im� by subtracting the
Goldstone boson contribution.

Other attempts to estimate the S parameter for walking
technicolor theories have been made in the past [46] show-
ing reduction of the S parameter. S has also been evaluated
using computations inspired by the original AdS/CFT cor-
respondence [47] in [48–52].

Very recently, Kurachi, Shrock, and Yamawaki [53]
have further confirmed the results presented in [22] with
their computations tailored for describing four-
dimensional gauge theories near the conformal window.
The present approach [22] is more physical since it is based
on the nature of the spectrum of states associated directly
to the underlying gauge theory.

Note that in this work we are taking a rather conservative
approach in which the S parameter, although reduced with
respect to the case of a running theory, is positive and not
very small. After all, other sectors of the theory such as
new leptons can further reduce or even offset a positive
value of S due solely to the technicolor theory.

In our effective theory the S parameter is directly pro-
portional to the parameter r3 via

 S �
8�

~g2 
�2� 
�; with 
 �
v2 ~g2

2M2
A

r3; (63)

where we have expanded in g=~g and kept only the leading
order. The full expression can be found in Appendix D. We
can now use the sum rules to relate r3 to other parameters
in the theory for the running and the walking case. Within
the effective theory we deduce

 F2
V �

�
1� 


r2

r3

�
2M2

A

~g2 �
2M2

V

~g2 ;

F2
A � 2

M2
A

~g2 �1� 
�
2; F2

� � v2�1� 
r3�:

(64)

Hence, the first WSR reads

 1� r2 � 2r3 � 0; (65)

while the second

 �r2 � r3��v
2 ~g2�r2 � r3� � 4M2

A� � a
16�2

d�R�
v2�1� 
r3�

2:

(66)

To gain analytical insight we consider the limit in which
~g is small while g=~g is still much smaller than 1. To leading
order in ~g the second sum rule simplifies to

 r3 � r2 � a
4�2

d�R�
v2

M2
A

: (67)

Together with the first sum rule, we find

 r2 � 1� 2t; r3 � 1� t; (68)

with

 t � a
4�2

d�R�
v2

M2
A

: (69)

The approximate S parameter reads

 S � 8�
v2

M2
A

�1� t�: (70)

A small value of a provides a large and positive t rendering
S smaller than expected in a running theory. In the next
subsection we will make a similar analysis without taking
the limit of small ~g.

C. Axial-vector spectrum via WSRs

It is interesting to determine the relative vector to axial
spectrum as a function of one of the two masses, say the
axial one, for a fixed value of the S parameter meant to be
associated to a given underlying gauge theory.

For a running type dynamics (i.e. a � 0), the two WSRs
force the vector mesons to be quite heavy (above 3 TeV) in
order to have a relatively low S parameter (S ’ 0:1). This
can be seen directly from Eq. (63) in the running regime,
where r2 � r3 � 1. This leads to

 M2
A *

8�v2

S
; (71)

which corresponds to MA * 3:6 TeV, for S ’ 0:11.
Perhaps a more physical way to express this is to say that
it is hard to have an intrinsically small S parameter for
running-type theories. By small, we mean smaller than the
scaled up technicolor version of QCD with two technifla-
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vors, in which S ’ 0:3. In Fig. 1 we plot the difference
between the axial and vector mass as a function of the axial
mass, for S ’ 0:11. Since Eq. (71) provides a lower bound
for MA, this plot shows that in the running regime the axial
mass is always heavier than the vector mass. In fact, the
M2
A �M

2
V difference is proportional to r2, with a positive

proportionality factor (see Appendix C), and r2 � 1 in the
running regime.

When considering the second WSR modified by the
walking dynamics, we observe that it is possible to have
quite light spin-one vector mesons compatible with a small
S parameter. We numerically solve the first and second
WSR in presence of the contribution due to walking in the
second sum rule. The results are summarized in Fig. 2. As
for the running case, we set again S ’ 0:11. This value is
close to the estimate in the underlying MWT [54]. The
different curves are obtained by varying ~g from one (the
thinnest curve) to eight (the thickest curve). We plot the
allowed values of MA �MV as a function of MA in the left
panel, having imposed only the first sum rule. In the right

panel, we compute the corresponding value that a should
assume as a function ofMA in order for the second WSR to
be satisfied in the walking regime as well. For any given
underlying gauge theory all of the values of the parameters
are fixed and our computation shows that it is possible to
have walking theories with light vector mesons and a small
S parameter. Such a scenario needs a positive value of a,
together with an axial meson lighter than its associated
vector meson for a between zero and four, when the axial-
vector mass is lighter than approximately 2.5 TeV.
However, for spin-one fields heavier than roughly
2.5 TeV and with still a positive a. one has an axial meson
heavier than the vector one. A degenerate spectrum allows
for a small S but with relatively large values of a and spin-
one masses around 2.5 TeV. We observe that a becomes
zero (and eventually negative) when the vector spectrum
becomes sufficiently heavy. In other words, we recover the
running behavior for large masses of spin-one fields.
Although in the plot we show negative values of a, one
should stop the analysis after having reached a zero value
of a. In fact, for masses heavier than roughly 3.5 TeV the
second WSR for the running behavior, i.e. a � 0, is
enforced.

Our results are general and help in elucidating how
different underlying dynamics will manifest itself at
LHC. Any four-dimensional strongly interacting theory
replacing the Higgs mechanism, with two Dirac technifla-
vors gauged under the electroweak theory, is expected to
have a spectrum of the low lying vector resonances like the
one presented above.

In a generic strongly coupled gauge theory there is a
priori no obstruction to an axial-vector meson being lighter
than the associated vector meson. This is clearly elucidated
at the effective Lagrangian level where the most generic
effective theory can easily accommodate both orderings.
The constraint comes from the second WSR in the running
regime. When the second sum rule is modified, then the
ordering of the axial and vector mesons can be altered. It is
important to observe that one can have very light spin-one
fields only when the second sum rule is modified and with
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FIG. 1. In the picture above we have set 103Ŝ � 1, correspond-
ing to S ’ 0:11. In Appendix D we have provided the relation
between Ŝ and the traditional S. Here we have imposed the first
and the second WSR for a � 0. This corresponds to an under-
lying gauge theory with a standard running behavior of the
coupling constant.
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FIG. 2. In the two pictures above we have set 103Ŝ � 1, corresponding to S ’ 0:11, and the different curves are obtained by varying
~g from one (the thinnest curve) to eight (the thickest curve). We have imposed the first WSR. Left panel: We plot the allowed values of
MA �MV as a function of MA. Right panel: We compute the value that a should assume as a function of MA in order for the second
WSR to be satisfied in the walking regime. Note that a is expected to be positive or zero.
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the axial being lighter than the vector meson. Another
important point is that the resonance inversion does not
imply a negative or zero S parameter.

We provide the relation between S and the recently
proposed modification of the electroweak parameters [55]
in Appendix D. In the same Appendix, we explicitly com-
pute the remaining parameters within our effective theory
and check that they do not lead to further constraints given
the current status of the precision measurements.

D. Vanishing S via new leptons

Although we have already studied the effects of the
lepton family on the electroweak parameters in [8], we
summarize here the main results in Fig. 3. The ellipses
represent the 68% confidence region for the S and T
parameters. The upper ellipse is for a reference Higgs
mass of the order of 1 TeV while the lower curve is for a
light Higgs with mass around 114 GeV. The contribution
from the MWT theory per se and of the leptons as a
function of the new lepton masses is expressed by the
dark gray region. The left panel has been obtained using
a SM-type hypercharge assignment while the right-hand
graph is for y � 1. In both pictures the regions of overlap
between the theory and the precision contours are achieved
when the upper component of the weak isospin doublet is
lighter than the lower component. The opposite case leads
to a total Swhich is larger than the one predicted within the
new strongly coupled dynamics per se. This is due to the
sign of the hypercharge for the new leptons. The mass
range used in the plots in the case of the SM hypercharge
assignment is 100–1000 GeV for the new electron and 50–

800 GeV for the new Dirac neutrino, while it is 100–800
and 100–1000 GeV, respectively, for the y � 1 case. The
plots have been obtained assuming a Dirac mass for the
new neutral lepton (in the case of a SM hypercharge
assignment). The range of the masses for which the theory
is in the ellipses, for a reference Higgs mass of a TeV, is
100– 400 GeV for the new neutrino and about twice the
mass of the neutrino for the new electron.

The analysis for the Majorana mass case has been per-
formed in [12] where one can again show that it is easy to
be within the 68% contours.

The contour plots we have drawn take into account the
new values of the top mass which has dropped dramatically
since we last compared our theory in [8] to the experimen-
tal data [56].

V. CONCLUSIONS

We have provided a comprehensive extension of the
standard model which embodies (minimal) walking techni-
color theories and their interplay with the standard model
particles. Our extension of the standard model features all
of the relevant low energy effective degrees of freedom
linked to our underlying minimal walking theory. These
include scalars, pseudoscalars, as well as spin-one fields.
The bulk of the Lagrangian has been spelled out. The link
with underlying strongly coupled gauge theories has been
achieved via the time-honored Weinberg sum rules. The
modification of the latter according to walking has been
taken into account. We have also analyzed the case in
which the underlying theory behaves like QCD rather
than being near an infrared fixed point. This has allowed
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FIG. 3. The ellipses represent the 68% confidence region for the S and T parameters. The upper ellipse is for a reference Higgs mass
of the order of a TeV, the lower curve is for a light Higgs with mass around 114 GeV. The contribution from the MWT theory per se and
of the leptons as a function of the new lepton masses is expressed by the dark gray region. The left panel has been obtained using a SM-
type hypercharge assignment while the right-hand graph is for y � 1.
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us to gain insight on the spectrum of the spin-one fields
which is an issue of phenomenological interest. In the
Appendices we have: (i) provided the explicit construction
of all of the SU(4) generators, (ii) shown how to construct
the effective Lagrangian in a way which is amenable to
quantum corrections, (iii) shown the explicit form of the
mass matrices for all of the particles, and (iv) provided a
summary of all of the relevant electroweak parameters and
their explicit dependence on the coefficients of our effec-
tive theory.

We have introduced the model in a format which is,
hopefully, user friendly for collider phenomenology.
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APPENDIX A: GENERATORS

It is convenient to use the following representation of
SU(4):

 Sa �
A B
By �AT

� �
; Xi �

C D
Dy CT

� �
; (A1)

where A is Hermitian, C is Hermitian and traceless, B �
�BT and D � DT . The S are also a representation of the
SO(4) generators, and thus leave the vacuum invariant
SaE� ESaT � 0. Explicitly, the generators read

 Sa �
1

2
���
2
p

	a 0
0 �	aT

� �
; a � 1; . . . ; 4; (A2)

where a � 1, 2, 3 are the Pauli matrices and 	4 � 1. These
are the generators of SUV�2� � UV�1�:

 Sa �
1

2
���
2
p

0 Ba

Bay 0

� �
; a � 5; 6; (A3)

with

 B5 � 	2; B6 � i	2: (A4)

The rest of the generators which do not leave the vacuum
invariant are

 Xi �
1

2
���
2
p

	i 0
0 	iT

� �
; i � 1; 2; 3; (A5)

and

 Xi �
1

2
���
2
p

0 Di

Diy 0

� �
; i � 4; . . . ; 9; (A6)

with

 D4 � 1; D6 � 	3; D8 � 	1;

D5 � i1; D7 � i	3; D9 � i	1:
(A7)

The generators are normalized as follows:

 Tr �SaSb� � 1
2�

ab; Tr�XiXj� � 1
2�

ij;

Tr�XiSa� � 0:
(A8)

APPENDIX B: VECTOR MESONS AS GAUGE
FIELDS

We show how to rewrite the vector meson Lagrangian in
a gauge invariant way. We assume the scalar sector to
transform according to a given but otherwise arbitrary
representation of the flavor symmetry group G. This is a
straightforward generalization of the hidden local gauge
symmetry idea [57,58], used in a similar context for the
BESS models [26]. At the tree approximation this ap-
proach is identical to the one introduced first in [59,60].

1. Introducing vector mesons

Let us start with a generic flavor symmetry group G
under which a scalar fieldM transforms globally in a given,
but generic, irreducible representation R. We also intro-
duce an algebra valued one-form A � A�dx� taking val-
ues in a copy of the algebra of the group G, call it G0, i.e.

 A� � Aa�T
a; with Ta 2A�G0�: (B1)

At this point the full group structure is the semisimple
group G�G0. M does not transform under G0. Given
that M and A belong to two different groups, we need
another field to connect the two. We henceforth introduce
a new scalar field N transforming according to the funda-
mental of G and to the antifundamental of G0. We then
upgrade A to a gauge field over G0. The covariant deriva-
tive for N is

 D�N � @�N � i~gNA�: (B2)

The field content can be found in Table I. We now force N
to acquire the following vacuum expectation value:

 hNi
ji � �ijv

0; (B3)

which leaves the diagonal subgroup—denoted with GV —
ofG�G0 invariant. Clearly GV is a copy ofG. Note that it
is always possible to arrange a suitable potential term forN
leading to the previous pattern of symmetry breaking. v=v0

TABLE I. Field content.

G G0

M R 1
N � ��
A� 1 Adj
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is expected to be much less than one and the unphysical
massive degrees of freedom associated to the fluctuations
of N will have to be integrated out. The would-be
Goldstone bosons associated to N will become the longi-
tudinal components of the massive vector mesons.

To connect A toM, we define the one-form transforming
only under G via N which—in the deeply spontaneously
broken phase of N—reads

 

Tr�NNy�
dim�F�

P� �
D�NN

y � ND�N
y

2i~g
; P� ! uP�u

y;

(B4)

with u being an element of G and dim�F� the dimension of
the fundamental representation of G. When evaluating P�
on the vacuum expectation value for N, we recover A�:

 hP�i � A�: (B5)

At this point it is straightforward to write the Lagrangian
containingN,M, and A and their self-interactions. Being in
the deeply broken phase ofG�G0 down toGV we countN
as a dimension zero field. This is consistent with the
normalization for P�.

The kinetic term of the Lagrangian is

 Lkinetic � �
1
2 Tr�F��F

��� � 1
2 Tr�DNDNy�

� 1
2 Tr�@M@My�: (B6)

The second kinetic term will provide a mass to the vector
mesons. Besides the potential terms for M and N, there is
another part of the Lagrangian which is of interest to us.
This is the one mixing P and M. Up to dimension four and
containing at most two powers of P and M, this is
 

LP�M � ~g2r1 Tr�P�P�MMy� � ~g2r2 Tr�P�MP�TMy�

� i~gr3 Tr�P��M�D�M�y � �D�M�My��

� ~g2sTr�P�P
��Tr�MMy�: (B7)

The dimensionless parameters r1, r2, r3, s parametrize the
strength of the interactions between the composite scalars
and vectors in units of ~g, and are therefore expected to be
of order one. We have assumed M to belong to the two
index symmetric representation of a genericG � SU�N�. It
is straightforward to generalize the previous terms to the
case of an arbitrary representation R with respect to any
groupG. Further higher derivative interactions includingN
can be included systematically.

2. Further gauging of G

In this case we add another gauge field G� taking values
in the algebra of G. The field content can be found in
Table II. We then define the correct covariant derivatives
for M and N. For N, for example, we have

 D�N � @�N � igG�N � i~gNA�: (B8)

Evaluating the previous expression on the vacuum expec-
tation value of N we recover the field C� introduced in the
text. To be more precise we need to use P� again but with
the covariant derivative for N replaced by the one in the
equation above.

APPENDIX C: EFFECTIVE LAGRANGIAN AND
MASS MATRICES

In this section we summarize and generalize the effec-
tive Lagrangians for the scalar and vector sectors, and
include the explicit mass matrices for the mixings of the
composite vectors with the fundamental gauge fields.

1. Scalar sector

The composite scalars are assembled in the matrix M of
Eq. (10). In terms of the mass eigenstates this reads

 M �

i�UU � ~�UU
i�UD�

~�UD��
2
p ��i��i�0�A0

2
i���A���

2
p

i�UD�
~�UD��

2
p i�DD � ~�DD

i���A���
2
p ��i��i�0�A0

2

��i��i�0�A0

2
i���A���

2
p i� �U �U �

~� �U �U
i� �U �D�

~� �U �D��
2
p

i���A���
2
p ��i��i�0�A0

2
i� �U �D�

~� �U �D��
2
p i� �D �D �

~� �D �D

0
BBBBBBB@

1
CCCCCCCA
; (C1)

where � � v�H. The Lagrangian for the Higgs sector, including the spontaneously broken potential, and the ETC mass
term for the uneaten Goldstone bosons, is

 L Higgs �
1

2
Tr�D�MD

�My� �
m2

2
Tr�MMy� �

�
4

Tr�MMy�2 � �0 Tr�MMyMMy� � 2�00�det�M� � det�My��

�
m2

ETC

4
Tr�MBMyB�MMy�; (C2)

where the covariant derivative is given by Eq. (20).
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2. Vector sector

In terms of the charge eigenstates the matrix A� is

 A� �

a0��v0��v4�

2
��
2
p a���v��

2
x�UU��

2
p

x�UD�s
�
UD

2

a���v��
2

�a0��v0��v4�

2
��
2
p

x�UD�s
�
UD

2
x�DD��

2
p

x��U �U��
2
p

x��U �D
�s��U �D
2

a0��v0��v4�

2
��
2
p a���v��

2
x��U �D
�s��U �D
2

x��D �D��
2
p a���v��

2
�a0��v0��v4�

2
��
2
p

0
BBBBBBBB@

1
CCCCCCCCA
: (C3)

The most general Lagrangian for the gauge and vector fields can be conveniently written using the N and P� fields of
Appendix B. Demanding CP invariance, and including terms up to dimension four, we have

 L vector � �
1
2 Tr� ~W��

~W��� � 1
4 Tr�B��B

��� � 1
2 Tr�F��F

��� � 1
2 Tr�D�N�D

�N�y� � 1
2 Tr�D�M�D

�M�y�

� ~g2a1 Tr�P�P
��2 � ~g2a2 Tr�P�P

�P�P
�� � ~g2a3 Tr�P�P�P

�P�� � i~gbTr��P�;P��NF
��Ny�

� ~g2r1 Tr�P�P
�MMy� � ~g2r2 Tr�P�MP

�TMy� � i~gr3 Tr�P��M�D
�M�y � �D�M�My��

� ~g2sTr�P�P
��Tr�MMy�; (C4)

where the field strength tensorF�� is given by Eq. (38), and the covariant derivatives ofM andN are, respectively, given by
Eqs. (20) and (B8). Notice that we have excluded the terms iTr��P�; P��G��� and Tr�NF��NyG��� with order one
couplings. There terms in the limit of no weak interactions are reserved solely to technicolor interactions. Here G��

contains ~W�� and B��.
The covariant derivative terms give rise to mass terms for the charged and neutral vector bosons:

 L mass � � ~W��v��a���M2
C

~W��

v��

a��

0
B@

1
CA� 1

2
�B� ~W3

�v0
�a0

�v4
��M

2
N

B�
~W3�

v0�

a0�

v4�

0
BBBBB@

1
CCCCCA; (C5)

where

 M 2
C �

g2M2
V �1�!�
~g2 �

gM2
V��

2
p

~g
�

gM2
A�1�
���

2
p

~g

�
gM2

V��
2
p

~g
M2
V 0

�
gM2

A�1�
���
2
p

~g
0 M2

A

0
BBBB@

1
CCCCA; (C6)

 M 2
N �

g02M2
V �1�2y2�!�

~g2 �
gg0M2

V!
~g2 �

g0M2
V��

2
p

~g

g0M2
A�1�
���

2
p

~g
�

g0M2
V �2y���
2
p

~g

�
gg0M2

V!
~g2

g2M2
V �1�!�
~g2 �

gM2
V��

2
p

~g
�

gM2
A�1�
���

2
p

~g
0

�
g0M2

V��
2
p

~g
�

gM2
V��

2
p

~g
M2
V 0 0

g0M2
A�1�
���

2
p

~g
�

gM2
A�1�
���

2
p

~g
0 M2

A 0

�
g0M2

V �2y���
2
p

~g
0 0 0 M2

V

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
: (C7)

Here MV and MA are the masses of the vector and axial-
vector bosons in the absence of electroweak interactions,

and are related by

 M2
A � M2

V �
1
2v

2 ~g2r2: (C8)

The parameters ! and 
 are defined by

 ! 	
v2 ~g2

4M2
V

�1� r2 � 2r3� 
 	
v2 ~g2

2M2
A

r3; (C9)

where 
 has been used already in Eq. (63).
The vector baryons do not mix with the fundamental

gauge fields and thus their masses do not receive tree-level

TABLE II. Field content.

G G0

M R 1
N � ��
A� 1 Adj
G� Adj 1
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electroweak corrections. Therefore, xUU, xUD, and xDD are
axial mass eigenstates, and sUD is a vector mass eigenstate:

 MxUU � MxUD � MxDD � MA; MsUD � MV: (C10)

APPENDIX D: UNIVERSAL ELECTROWEAK
CORRECTIONS

Any extension of the standard model cannot be at odds
with the precision electroweak data. Universal corrections
to the standard model, i.e. corrections to the self-energies
of the vector bosons, may be encoded in a total of 7
parameters following Ref. [55]. We show the relation
with the ones presented in the main text [23] and use our
newly built effective theory to explicitly evaluate the cor-
rections within the MWT. Let Q2 	 �q2 be the Euclidean
transferred momentum, and denote derivatives with respect
to �Q2 with a prime. Then we have the following defini-
tions [55]:

 Ŝ 	 g2�0
W3B
�0�; (D1)

 T̂ 	
g2

M2
W

��W3W3�0� ��W�W��0��; (D2)

 W 	
g2M2

W

2
��00

W3W3�0��; (D3)

 Y 	
g02M2

W

2
��00

BB�0��; (D4)

 Û 	 �g2��0
W3W3�0� ��0

W�W��0��; (D5)

 V 	
g2M2

W

2
��00

W3W3�0� ��00
W�W��0��; (D6)

 X 	
gg0M2

W

2
�00
W3B�0�: (D7)

Here �V�Q2� with V � fW3B;W3W3; W�W�; BBg repre-
sents the self-energy of the vector bosons. Here the elec-
troweak couplings are the ones associated to the physical

electroweak gauge bosons:

 

1

g2 	 �0
W�W��0�;

1

g02
	 �0

BB�0�; (D8)

while GF is

 

1���
2
p
GF
� �4�W�W��0�; (D9)

as in [61]. Ŝ and T̂ lend their name from the well-known
Peskin-Takeuchi parameters S and T which are related to
the new ones via [55,61]:

 

�S

4s2
W
� Ŝ� Y �W; �T � T̂ �

s2
W

1� s2
W

Y: (D10)

Here � is the electromagnetic structure constant and s2
W is

the weak mixing angle. Therefore in the case where W �
Y � 0 we have the simple relation

 Ŝ �
�S

4s2
W

; T̂ � �T: (D11)

In our model, these parameters read

 Ŝ �
�2� 
�
g2

2~g2 � �2� 2
� 
2�g2 ; (D12)

 T̂ � 0; (D13)

 W � M2
W

g2�M2
A � �
� 1�2M2

V�

�2~g2 � �2� �
� 2�
�g2�M2
AM

2
V

; (D14)

 Y � M2
W

g02��1� 4y2�M2
A � �
� 1�2M2

V�

�2~g2 � �2� 4y2 � �
� 2�
�g02�M2
AM

2
V

;

(D15)

 Û � 0; (D16)

 V � 0; (D17)

 X � gg0
M2
W

M2
AM

2
V

M2
A � �
� 1�2M2

V�����������������������������������������������������������������������������������������������������������������������
�2~g2 � �2� 2
� 
2�g2��2~g2 � �2� 4y2 � 2
� 
2�g02�

p : (D18)

In these expressions the coupling constants g, g0, and ~g are
the ones in the Lagrangian associated to the yet to be
diagonalized spin-one states. W, Y, and X are sensitive to
the ratio M2

W=M
2 with M2 the lightest of the massive spin-

one fields. We have checked that even taking an axial-
vector mass as small as 500 GeV while keeping large ~g for
fixed S of order 0.1 one is able to satisfy the experimental
constraints on all of the parameters.
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