5,437 research outputs found

    The Up-C Revolution

    Full text link
    Over the past few years, a revolutionary new tax structure, known as the Up-C, has become increasingly popular, particularly in instances where an LLC is being taken public. In such an Up-C IPO, a newly formed C corporation is placed on top of the existing LLC, which continues to operate the business. Shares of the C corporation are sold to new investors, and the proceeds are used by the C corporation to buy an interest in the LLC. Meanwhile, the legacy owners of the LLC (typically, founders and private investment funds) retain their interests in the LLC, while receiving exchange rights that allow them to swap their LLC interests for equivalent-value shares of the C corporation. In addition, the legacy owners often receive the benefit of tax receivables agreements (TRAs), which provide that the owners will receive a specified percentage (usually 85 percent) of the tax benefits to the C corporation resulting from future exchanges. In combination, these features seem to provide a near-nirvana of tax efficiency. It is therefore unsurprising that the popularity of Up-Cs is growing at an exponential rate. Nevertheless, the Up-C has received very little attention in the academic literature. This paper endeavors to fill this void. It describes the complicated Up-C IPO structure (and its frequent complement, TRAs) in detail and discusses their many attractive tax features. While Up-Cs and TRAs have faced skepticism from some quarters, the paper explains that there appears to be nothing particularly nefarious about the use of Up-Cs or TRAs per se, at least from a tax policy perspective. In addition, the paper discusses some of the significant implications of the Up-C revolution, including choice-of-entity and international tax implications. We believe that ultimately the Up-C revolution will finally fulfill predictions that the advent of the LLC would fundamentally alter the landscape of business taxation in the United States, not by replacing corporations with LLCs but instead by combining the best features of both entities into a single dominant structure

    The Glueball in a Chiral Linear Sigma Model with Vector Mesons

    Full text link
    We present a two-flavour linear sigma model with global chiral symmetry and (axial-)vector mesons as well as an additional glueball degree of freedom. We study the structure of the well-established scalar resonances f0(1370) and f0(1500): by a fit to experimentally known decay widths we find that f0(1370) is predominantly a \bar{q}q state and f0(1500) is predominantly a glueball state. The overall phenomenology of these two resonances can be well described. Other assignments for our mixed quarkonium-glueball states are also tested, but turn out to be in worse agreement with the phenomenology. As a by-product of our analysis, the gluon condensate is determined.Comment: 8 page

    Progress on the hybrid gun project at UCLA

    Get PDF
    UCLA/INFN-LNF/Univ. Rome has been developing the hybrid gun which has an RF gun and a short linac for velocity bunching in one structure. After the cavity was manufactured at INFN-LNF in 2012, tests of the gun was carried out at UCLA. The field in the standing wave part was 20 % smaller than the simulation but the phase advance was fine. The cavity was commissioned successfully up to 13 MW. The beam test was performed at 11.5 MW and demonstrated the bunch compression

    Observation of Plasma Focusing of a 28.5 GeV Positron Beam

    Full text link
    The observation of plasma focusing of a 28.5 GeV positron beam is reported. The plasma was formed by ionizing a nitrogen jet only 3 mm thick. Simultaneous focusing in both transverse dimensions was observed with effective focusing strengths of order Tesla per micron. The minimum area of the beam spot was reduced by a factor of 2.0 +/- 0.3 by the plasma. The longitudinal beam envelope was measured and compared with numerical calculations

    Analyzing symmetry breaking within a chaotic quantum system via Bayesian inference

    Get PDF
    Bayesian inference is applied to the level fluctuations of two coupled microwave billiards in order to extract the coupling strength. The coupled resonators provide a model of a chaotic quantum system containing two coupled symmetry classes of levels. The number variance is used to quantify the level fluctuations as a function of the coupling and to construct the conditional probability distribution of the data. The prior distribution of the coupling parameter is obtained from an invariance argument on the entropy of the posterior distribution.Comment: Example from chaotic dynamics. 8 pages, 7 figures. Submitted to PR

    Surface charge transfer doping a quantum confined silver monolayer beneath epitaxial graphene

    Get PDF
    Recently the graphene/SiC interface has emerged as a versatile platform for the epitaxy of otherwise unstable, monoelemental, two-dimensional (2D) layers via intercalation. Intrinsically capped into a van der Waals heterostructure with overhead graphene, they compose a new class of quantum materials with striking properties contrasting their parent bulk crystals. Intercalated silver presents a prototypical example where 2D quantum confinement and inversion symmetry breaking entail a metal-to-semiconductor transition. However, little is known about the associated unoccupied states, and control of the Fermi level position across the bandgap would be desirable. Here, we n-type dope a graphene/2D-Ag/SiC heterostack via in situ potassium deposition and probe its band structure by means of synchrotron-based angle-resolved photoelectron spectroscopy. While the induced carrier densities on the order of 101410^{14} cm2^{-2} are not yet sufficient to reach the onset of the silver conduction band, the band alignment of graphene changes relative to the rigidly shifting Ag valence band and substrate core levels. We further demonstrate an ordered potassium adlayer (2×22\times 2 relative to graphene) with free-electron-like dispersion, suppressing plasmaron quasiparticles in graphene via enhanced metalization of the heterostack. Our results establish surface charge-transfer doping as an efficient handle to modify band alignment and electronic properties of a van der Waals heterostructure assembled from graphene and a novel type of monolayered quantum material.Comment: 12 pages, 6 figures; minor changes, accepted in journa

    The linked survival prospects of siblings : evidence for the Indian states

    Get PDF
    This paper reports an analysis of micro-data for India that shows a high correlation in infant mortality among siblings. In 13 of 15 states, we identify a causal effect of infant death on the risk of infant death of the subsequent sibling (a scarring effect), after controlling for mother-level heterogeneity. The scarring effects are large, the only other covariate with a similarly large effect being mother’s (secondary or higher) education. The two states in which evidence of scarring is weak are Punjab, the richest, and Kerala, the socially most progressive. The size of the scarring effect depends upon the sex of the previous child in three states, in a direction consistent with son-preference. Evidence of scarring implies that policies targeted at reducing infant mortality will have social multiplier effects by helping avoid the death of subsequent siblings. Comparison of other covariate effects across the states offers some interesting new insights

    Overdoping Graphene Beyond the van Hove Singularity

    Get PDF
    At very high doping levels the van Hove singularity in the π\pi^* band of graphene becomes occupied and exotic ground states possibly emerge, driven by many-body interactions. Employing a combination of ytterbium intercalation and potassium adsorption, we nn dope epitaxial graphene on silicon carbide past the π\pi^* van Hove singularity, up to a charge carrier density of 5.5×\times1014^{14} cm2^{-2}. This regime marks the unambiguous completion of a Lifshitz transition in which the Fermi surface topology has evolved from two electron pockets into a giant hole pocket. Angle-resolved photoelectron spectroscopy confirms these changes to be driven by electronic structure renormalizations rather than a rigid band shift. Our results open up the previously unreachable beyond-van-Hove regime in the phase diagram of epitaxial graphene, thereby accessing an unexplored landscape of potential exotic phases in this prototype two-dimensional material.Comment: 6 pages, 2 figure

    Comment on ``Critical Behavior in Disordered Quantum Systems Modified by Broken Time--Reversal Symmetry''

    Full text link
    In a recent Letter [Phys. Rev. Lett. 80, 1003 (1998)] Hussein and Pato employed the maximum entropy principle (MEP) in order to derive interpolating ensembles between any pair of universality classes in random matrix theory. They apply their formalism also to the transition from random matrix to Poisson statistics of spectra that is observed for the case of the Anderson-type metal-insulator transition. We point out the problems with the latter procedure.Comment: 1 page in PS, to appear in PRL Sept. 2

    Compact support probability distributions in random matrix theory

    Get PDF
    We consider a generalization of the fixed and bounded trace ensembles introduced by Bronk and Rosenzweig up to an arbitrary polynomial potential. In the large-N limit we prove that the two are equivalent and that their eigenvalue distribution coincides with that of the "canonical" ensemble with measure exp[-nnTr V(M)]. The mapping of the corresponding phase boundaries is illuminated in an explicit example. In the case of a Gaussian potential we are able to derive exact expressions for the one- and two-point correlator for finite nn, having finite support
    corecore