19 research outputs found

    Synthesis, X-ray Analysis, and Biological Evaluation of a New Class of Stereopure Lactam-Based HIV-1 Protease Inhibitors

    Get PDF
    In an effort to identify a new class of druglike HIV-1 protease inhibitors, four different stereopure beta-hydroxy gamma-lactam-containing inhibitors have been synthesized, biologically evaluated, and cocrystallized. The impact of the tether length of the central spacer (two or three carbons) was also investigated. A compound with a shorter tether and (3R,4S) absolute configuration exhibited high activity with a K-i of 2.1 nM and an EC50 of 0.64 mu M. Further optimization by decoration of the P1' side chain furnished an even more potent HIV-1 protease inhibitor (K-i = 0.8 nM, EC50 = 0.04 mu M). According to X-ray analysis, the new class of inhibitors did not fully succeed in forming two symmetric hydrogen bonds to the catalytic aspartates. The crystal structures of the complexes further explain the difference in potency between the shorter inhibitors (two-carbon spacer) and the longer inhibitors (three-carbon spacer)

    Characterization of the properties of Pediococcus parvulus for probiotic or protective culture use.

    No full text
    Pediococcus parvulus 2.6 (previously Pediococcus damnosus 2.6, here confirmed as P. parvulus by 16S DNA sequencing) displayed antibacterial activity toward several bacterial species, including isolates found as contaminants in oats, herein genetically identified as Bacillus cereus. No inhibition of Listeria monocytogenes was found under the conditions used. Antibacterial activity was retrieved after ammonium sulfate or acetone precipitation showed it to be peptide mediated. P. parvulus 2.6 has previously shown good technological properties in oat-based products. This, together with the currently found inhibition of food spoilage microorganisms like B. cereus, makes it suitable as a food protective culture. Survival trials of P. parvulus 2.6 at conditions mimicking the gastrointestinal tract were prompted by previously found cholesterol-lowering effects in humans after consumption of oat products cofermented by using P. parvulus 2.6 and Bifidobacterium spp. Viability was measured with in vitro, gutlike simulations at 37 degrees C. High survival was shown under two of three conditions (gastric juice, bile, and small intestine juice), defined as main obstacles of the gastrointestinal tract. The critical step was bile exposure. At a concentration of 20%, viability was low, but 0.3% bile (mean concentration in the intestine) did not have a major influence on growth. Viability of P. parvulus 2.6 was significantly decreased in gastric juice at pH 1.5 (with pepsin), but it was not significantly affected at pH 2.5, and was also improved at a lower pH in 20% oat milk. Viability was judged sufficient for colonization at gutlike conditions, qualifying the strain for further probiotic studies

    Synthesis of P1′-Functionalized Macrocyclic Transition-State Mimicking HIV‑1 Protease Inhibitors Encompassing a Tertiary Alcohol

    No full text
    Seven novel tertiary alcohol containing linear HIV-1 protease inhibitors (PIs), decorated at the <i>para</i> position of the benzyl group in the P1′ side with (hetero)­aromatic moieties, were synthesized and biologically evaluated. To study the inhibition and antiviral activity effect of P1–P3 macrocyclization, 14- and 15-membered macrocyclic PIs were prepared by ring-closing metathesis of the corresponding linear PIs. The macrocycles were more active than the linear precursors and compound <b>10f</b>, with a 2-thiazolyl group in the P1′ position, was the most potent PI of this new series (<i>K</i><sub>i</sub> 2.2 nM, EC<sub>50</sub> 0.2 μM). Co-crystallized complexes of both linear and macrocyclic PIs with the HIV-1 protease enzyme were prepared and analyzed

    Design and Synthesis of P1–P3 Macrocyclic Tertiary-Alcohol-Comprising HIV‑1 Protease Inhibitors

    No full text
    To study P1–P3 macrocyclizations of previously reported tertiary-alcohol-comprising HIV-1 protease inhibitors (PIs), three new 14- and 15-member macrocyclic PIs were designed, synthesized by ring-closing metathesis, and evaluated alongside with 10 novel linear PIs. Cocrystallized complexes of the macrocyclic PIs and the HIV-1 protease are presented, analyzed, and discussed. The macrocyclic structures exhibited higher activities than the linear precursors with <i>K</i><sub>i</sub> and EC<sub>50</sub> values down to 3.1 nM and 0.37 μM, respectively

    In Vitro Activity and Preclinical Profile of TMC435350, a Potent Hepatitis C Virus Protease Inhibitor▿ †

    No full text
    The hepatitis C virus (HCV) NS3/4A serine protease has been explored as a target for the inhibition of viral replication in preclinical models and in HCV-infected patients. TMC435350 is a highly specific and potent inhibitor of NS3/4A protease selected from a series of novel macrocyclic inhibitors. In biochemical assays using NS3/4A proteases of genotypes 1a and 1b, inhibition constants of 0.5 and 0.4 nM, respectively, were determined. TMC435350 inhibited HCV replication in a cellular assay (subgenomic 1b replicon) with a half-maximal effective concentration (EC50) of 8 nM and a selectivity index of 5,875. The compound was synergistic with alpha interferon and an NS5B inhibitor in the replicon model and additive with ribavirin. In rats, TMC435350 was extensively distributed to the liver and intestinal tract (tissue/plasma area under the concentration-time curve ratios of >35), and the absolute bioavailability was 44% after a single oral administration. Compound concentrations detected in both plasma and liver at 8 h postdosing were above the EC99 value measured in the replicon. In conclusion, given the selective and potent in vitro anti-HCV activity, the potential for combination with other anti-HCV agents, and the favorable pharmacokinetic profile, TMC435350 has been selected for clinical development

    Building a precision medicine infrastructure at a national level: The Swedish experience

    Get PDF
    Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine

    Synthesis, X-ray Analysis, and Biological Evaluation of a New Class of Stereopure Lactam-Based HIV-1 Protease Inhibitors

    No full text
    In an effort to identify a new class of druglike HIV-1 protease inhibitors, four different stereopure β-hydroxy γ-lactam-containing inhibitors have been synthesized, biologically evaluated, and cocrystallized. The impact of the tether length of the central spacer (two or three carbons) was also investigated. A compound with a shorter tether and (3<i>R</i>,4<i>S</i>) absolute configuration exhibited high activity with a <i>K</i><sub>i</sub> of 2.1 nM and an EC<sub>50</sub> of 0.64 μM. Further optimization by decoration of the P1′ side chain furnished an even more potent HIV-1 protease inhibitor (<i>K</i><sub>i</sub> = 0.8 nM, EC<sub>50</sub> = 0.04 μM). According to X-ray analysis, the new class of inhibitors did not fully succeed in forming two symmetric hydrogen bonds to the catalytic aspartates. The crystal structures of the complexes further explain the difference in potency between the shorter inhibitors (two-carbon spacer) and the longer inhibitors (three-carbon spacer)

    Antiviral Activity and Mode of Action of TMC647078, a Novel Nucleoside Inhibitor of the Hepatitis C Virus NS5B Polymerase▿‡

    No full text
    Chronic infection with hepatitis C virus (HCV) is a major global health burden and is associated with an increased risk of liver cirrhosis and hepatocellular carcinoma. Current therapy for HCV infection has limited efficacy, particularly against genotype 1 virus, and is hampered by a range of adverse effects. Therefore, there is a clear unmet medical need for efficacious and safe direct antiviral drugs for use in combination with current treatments to increase cure rates and shorten treatment times. The broad genotypic coverage achievable with nucleosides or nucleotides and the high genetic barrier to resistance of these compounds observed in vitro and in vivo suggest that this class of inhibitors could be a valuable component of future therapeutic regimens. Here, we report the in vitro inhibitory activity and mode of action of 2′-deoxy-2′-spirocyclopropylcytidine (TMC647078), a novel and potent nucleoside inhibitor of the HCV NS5B RNA-dependent RNA polymerase that causes chain termination of the nascent HCV RNA chain. In vitro combination studies with a protease inhibitor resulted in additive efficacy in the suppression of HCV RNA replication, highlighting the potential for the combination of these two classes in the treatment of chronic HCV infection. No cytotoxic effects were observed in various cell lines. Biochemical studies indicated that TMC647078 is phosphorylated mainly by deoxycytidine kinase (dCK) without inhibiting the phosphorylation of the natural substrate, and high levels of triphosphate were observed in Huh7 cells and in primary hepatocytes in vitro. TMC647078 is a potent novel nucleoside inhibitor of HCV replication with a promising in vitro virology and biology profile
    corecore