54 research outputs found

    Large Energy Gaps in CaC₆ from Tunneling Spectroscopy: Possible Evidence of Strong-Coupling Superconductivity

    Get PDF
    Tunneling in CaC6 crystals reproducibly reveals superconducting gaps Δ of 2.3±0.2 meV that are ~40% larger than reported earlier. In an isotropic s -wave scenario, that puts CaC6 into the class of very strongly coupled superconductors, since 2Δ k Tc ~4.6, implying that soft Ca phonons are primarily involved in the superconductivity. This conclusion explains the relatively large Ca isotope effect found recently for CaC6, but it could also signal a strong anisotropy in the electron-phonon interaction

    Dual-Band Selective Circular Dichroism in Mid-Infrared Chiral Metasurfaces

    Get PDF
    Most chiral metamaterials and meta surfaces are designed to operate in a single wavelength band and with a certain circular dichroism (CD) value. Here, mid-infrared chiral meta surface absorbers with selective CD in dual-wavelength bands are designed and demonstrated. The dual-band CD selectivity and tunability in the chiral meta surface absorbers are enabled by the unique design of a unit cell with two coupled rectangular bars. It is shown that the sign of CD in each wavelength band can be independently controlled and flipped by simply adjusting the geometric parameters, the width and the length, of the vertical rectangular bars. The mechanism of the dual-band CD selection in the chiral meta surface absorber is further revealed by studying the electric field and magnetic field distributions of the antibonding and bonding modes supported in the coupled bars under circularly polarized incident light. Furthermore, the chiral resonance wavelength can be continuously increased by scaling up the geometric parameters of the meta surface unit cell. The demonstrated results will contribute to the advance of future mid-infrared applications such as chiral molecular sensing, thermophotovoltaics, and optical communication

    Evidence of Strong-Coupled Superconductivity in CaC6 from Tunneling Spectroscopy

    Get PDF
    Point-contact tunneling on CaC6_6 crystals reproducibly reveals superconducting gaps, Δ\Delta, of 2.3±\pm0.2 meV which are \sim~40% larger than earlier reports. That puts CaC6_6 into the class of very strong-coupled superconductors since 2Δ\Delta/kTc_c\sim~4.6. Thus soft Ca phonons will be primarily involved in the superconductivity, a conclusion that explains the large Ca isotope effect found recently for CaC6_6. Consistency among superconductor-insulator-normal metal (SIN), SIS and Andreev reflection (SN) junctions reinforces the intrinsic nature of this result.Comment: 2nd version, 4 pages, 4 figures, re-submitted to Physical Review Letter

    Strong Circular Dichroism in Chiral Plasmonic Metasurfaces Optimized by Micro-Genetic Algorithm

    Get PDF
    Strong circular dichroism in absorption in the near-infrared wavelength range is realized by designing binary-pattern chiral plasmonic metasurfaces via the micro-genetic algorithm optimization method. The influence of geometric parameter modifications in the binary-pattern nanostructures on the circular dichroism performance is studied. The strong circular dichroism in absorption is attributed to the simultaneous excitation and field interference of the resonant modes with relative phase delay under linearly polarized incident light. This work provides a universal design method toward the on-demand properties of chiral metasurfaces, which paves the way for future applications in chemical and biological sensing, chiral imaging and spectroscopy

    Plasmon-Phonon Coupling between Mid-Infrared Chiral Metasurfaces and Molecular Vibrations

    Get PDF
    Plasmon-phonon coupling between metamaterials and molecular vibrations provides a new path for studying mid-infrared light-matter interactions and molecular detection. So far, the coupling between the plasmonic resonances of metamaterials and the phonon vibrational modes of molecules has been realized under linearly polarized light. Here, mid-infrared chiral plasmonic metasurfaces with high circular dichroism (CD) in absorption over 0.65 in the frequency range of 50 to 60 THz are demonstrated to strongly interact with the phonon vibrational resonance of polymethyl methacrylate (PMMA) molecules at 52 THz, under both left-handed and right-handed circularly polarized (LCP and RCP) light. The mode splitting features in the absorption spectra of the coupled metasurface-PMMA systems under both circular polarizations are studied in PMMA layers with different thicknesses. The relation between the mode splitting gap and the PMMA thickness is also revealed. The demonstrated results can be applied in areas of chiral molecular sensing, thermal emission, and thermal energy harvesting

    Near-Infrared Chiral Plasmonic Metasurface Absorbers

    Get PDF
    Chirality plays an essential role in the fields of biology, medicine and physics. However, natural materials exhibit very weak chiroptical response. In this paper, near-infrared chiral plasmonic metasurface absorbers are demonstrated to selectively absorb either the left-handed or right-handed circularly polarized light for achieving large circular dichroism (CD) across the wavelength range from 1.3 µm to 1.8 µm. It is shown that the maximum chiral absorption can reach to 0.87 and that the maximum CD in absorption is around 0.70. The current chiral metasurface design is able to achieve strong chiroptical response, which also leads to high thermal CD for the local temperature increase. The high-contrast reflective chiral images are also realized with the designed metasurface absorbers. The demonstrated chiral metasurface absorbers can be applied in many areas, such as optical filters, thermal energy harvesting, optical communication, and chiral imaging

    Tungsten silicide films for microwave kinetic inductance detectors

    Full text link
    Microwave Kinetic Inductance Detectors (MKIDs) provide highly multiplexed arrays of detectors that can be configured to operate from the sub-millimeter to the X-ray regime. We have examined two tungsten silicide alloys (W5Si3 and WSi2), which are dense alloys that provide a critical temperature tunable with composition, large kinetic inductance fraction, and high normal-state resistivity. We have fabricated superconducting resonators and provide measurement data on critical temperature, surface resistance, quality factor, noise, and quasiparticles lifetime. Tungsten silicide appears to be promising for microwave kinetic inductance detectors

    Metal-assisted etching of silicon molds for electroforming

    Get PDF
    Ordered arrays of high-aspect-ratio micro/nanostructures in semiconductors stirred a huge scientific interest due to their unique one-dimensional physical morphology and the associated electrical, mechanical, chemical, optoelectronic, and thermal properties. Metal-assisted chemical etching enables fabrication of such high aspect ratio Si nanostructures with controlled diameter, shape, length, and packing density, but suffers from structure deformation and shape inconsistency due to uncontrolled migration of noble metal structures during etching. Hereby the authors prove that a Ti adhesion layer helps in stabilizing gold structures, preventing their migration on the wafer surface while not impeding the etching. Based on this finding, the authors demonstrate that the method can be used to fabricate linear Fresnel zone plates

    X-ray Spectroscopy of a Rare-Earth Molecular System Measured at the Single Atom Limit in Room Temperature

    Full text link
    We investigate the limit of X-ray detection at room temperature on rare-earth molecular films using lanthanum and a pyridine-based dicarboxamide organic linker as a model system. Synchrotron X-ray scanning tunneling microscopy is used to probe the molecules with different coverages on a HOPG substrate. X-ray-induced photocurrent intensities are measured as a function of molecular coverage on the sample allowing a correlation of the amount of La ions with the photocurrent signal strength. X-ray absorption spectroscopy shows cogent M4,5 absorption edges of the lanthanum ion originated by the transitions from the 3d3/2 and 3d5/2 to 4f orbitals. X-ray absorption spectra measured in the tunneling regime further reveal an X-ray excited tunneling current produced at the M4,5 absorption edge of La ion down to the ultimate atomic limit at room temperature.Comment: 19 pages, 4 figure

    Intrinsic Photoconductivity of Few-layered ZrS2 Phototransistors via Multiterminal Measurements

    Get PDF
    We report intrinsic photoconductivity studies on one of the least examinedlayered compounds, ZrS2.Few-atomic layer ZrS2 field-effect transistorswere fabricated on the Si/SiO2 substrate and photoconductivity measurements were performed using both two- and four-terminal configurationsunder the illumination of 532 nm laser source. We measured photocurrentas a function of the incident optical power at several source-drain (bias)voltages. We observe a significantly large photoconductivity when measured in the multiterminal (four-terminal) configuration compared to thatin the two-terminal configuration. For an incident optical power of 90nW, the estimated photosensitivity and the external quantum efficiency(EQE) measured in two-terminal configuration are 0.5 A/W and 120%,respectively, under a bias voltage of 650 mV. Under the same conditions,the four-terminal measurements result in much higher values for both thephotoresponsivity (R) and EQE to 6 A/W and 1400%, respectively. Thissignificant improvement in photoresponsivity and EQE in the four-terminal configuration may have been influenced by the reduction of contactresistance at the metal-semiconductor interface, which greatly impacts thecarrier mobility of low conducting materials. This suggests that photoconductivity measurements performed through the two-terminal configurationin previous studies on ZrS2 and other 2D materials have severely underestimated the true intrinsic properties of transition metal dichalcogenides andtheir remarkable potential for optoelectronic applications
    corecore