1,690 research outputs found

    Isotope effect on superconductivity in Josephson coupled stripes in underdoped cuprates

    Full text link
    Inelastic neutron scattering data for YBaCuO as well as for LaSrCuO indicate incommensurate neutron scattering peaks with incommensuration ÎŽ(x)\delta(x) away from the (π,π)(\pi,\pi) point. Tc(x)T_c(x) can be replotted as a linear function of the incommensuration for these materials. This linear relation implies that the constant that relates these two quantities, one being the incommensuration (momentum) and another being Tc(x)T_c(x) (energy), has the dimension of velocity we denote v∗v^*: kBTc(x)=ℏv∗ή(x)k_B T_c(x) = \hbar v^* \delta(x). We argue that this experimentally derived relation can be obtained in a simple model of Josephson coupled stripes. Within this framework we address the role of the O16→O18O^{16} \to O^{18} isotope effect on the Tc(x)T_c(x). We assume that the incommensuration is set by the {\em doping} of the sample and is not sensitive to the oxygen isotope given the fixed doping. We find therefore that the only parameter that can change with O isotope substitution in the relation Tc(x)∌Ύ(x)T_c(x) \sim \delta(x) is the velocity v∗v^*. We predict an oxygen isotope effect on v∗v^* and expect it to be ≃5\simeq 5%.Comment: 4 pages latex file, 2 eps fig

    Spinful bosons in an optical lattice

    Get PDF
    We analyze the behavior of cold spin-1 particles with antiferromagnetic interactions in a one-dimensional optical lattice using density matrix renormalization group calculations. Correlation functions and the dimerization are shown and we also present results for the energy gap between ground state and the spin excited states. We confirm the anticipated phase diagram, with Mott-insulating regions of alternating dimerized S=1 chains for odd particle density versus on-site singlets for even density. We find no evidence for any additional ordered phases in the physically accessible region, however for sufficiently large spin interaction, on-site singlet pairs dominate leading, for odd density, to a breakdown of the Mott insulator or, for even density, a real-space singlet superfluid.Comment: Minor revisions and clarification

    Reduction of the sign problem using the meron-cluster approach

    Full text link
    The sign problem in quantum Monte Carlo calculations is analyzed using the meron-cluster solution. The concept of merons can be used to solve the sign problem for a limited class of models. Here we show that the method can be used to \textit{reduce} the sign problem in a wider class of models. We investigate how the meron solution evolves between a point in parameter space where it eliminates the sign problem and a point where it does not affect the sign problem at all. In this intermediate regime the merons can be used to reduce the sign problem. The average sign still decreases exponentially with system size and inverse temperature but with a different prefactor. The sign exhibits the slowest decrease in the vicinity of points where the meron-cluster solution eliminates the sign problem. We have used stochastic series expansion quantum Monte Carlo combined with the concept of directed loops.Comment: 8 pages, 9 figure

    Quantum Ising model in a transverse random field: A density-matrix renormalization group analysis

    Full text link
    The spin-1/2 quantum Ising chain in a transverse random magnetic field is studied by means of the density-matrix renormalization group. The system evolves from an ordered to a paramagnetic state as the amplitude of the random field is increased. The dependence of the magnetization on a uniform magnetic field in the z direction and the spontaneous magnetization as a function of the amplitude of the transverse random magnetic field are determined. The behavior of the spin-spin correlation function both above and at criticality is studied. The scaling laws for magnetization and correlation functions are tested against previous numerical and renormalization-group results.Comment: 5 pages with 7 figures inside them, proper format of authors' names use

    The effect of alcohol on cervical and ocular vestibular evoked myogenic potentials in healthy volunteers

    Full text link
    OBJECTIVE: We investigated the effect of alcohol on the cervical and ocular vestibular evoked myogenic potentials (cVEMPs and oVEMPs). As alcohol produces gaze-evoked nystagmus (GEN), we also tested the effect of nystagmus independent of alcohol by recording oVEMPs during optokinetic stimulation (OKS). METHODS: The effect of alcohol was tested in 14 subjects over multiple rounds of alcohol consumption up to a maximum breath alcohol concentration (BrAC) of 1.5‰ (mean 0.97‰). The effect of OKS was tested in 11 subjects at 5, 10 and 15deg/sec. RESULTS: oVEMP amplitude decreased from baseline to the highest BrAC level by 27% (range 5-50%, P<0.001), but there was no significant effect on oVEMP latency or cVEMP amplitude or latency. There was a significant negative effect of OKS on oVEMP amplitude (16%, P=0.006). CONCLUSIONS: We found a selective effect of alcohol on oVEMP amplitude, but no effect on the cVEMP. Vertical nystagmus elicited by OKS reduced oVEMP amplitude. SIGNIFICANCE: Alcohol selectively affects oVEMP amplitude. Despite the effects of alcohol and nystagmus, both reflexes were reliably recorded in all subjects and conditions. An absent response in a patient affected by alcohol or nystagmus indicates a vestibular deficit

    Topoisomer Differentiation of Molecular Knots by FTICR MS: Lessons from Class II Lasso Peptides

    Full text link
    Lasso peptides constitute a class of bioactive peptides sharing a knotted structure where the C-terminal tail of the peptide is threaded through and trapped within an N-terminalmacrolactamring. The structural characterization of lasso structures and differentiation from their unthreaded topoisomers is not trivial and generally requires the use of complementary biochemical and spectroscopic methods. Here we investigated two antimicrobial peptides belonging to the class II lasso peptide family and their corresponding unthreaded topoisomers: microcin J25 (MccJ25), which is known to yield two-peptide product ions specific of the lasso structure under collisioninduced dissociation (CID), and capistruin, for which CID does not permit to unambiguously assign the lasso structure. The two pairs of topoisomers were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR MS) upon CID, infrared multiple photon dissociation (IRMPD), and electron capture dissociation (ECD). CID and ECDspectra clearly permitted to differentiate MccJ25 from its non-lasso topoisomer MccJ25-Icm, while for capistruin, only ECD was informative and showed different extent of hydrogen migration (formation of c\bullet/z from c/z\bullet) for the threaded and unthreaded topoisomers. The ECD spectra of the triply-charged MccJ25 and MccJ25-lcm showed a series of radical b-type product ions {\eth}b0In{\TH}. We proposed that these ions are specific of cyclic-branched peptides and result from a dual c/z\bullet and y/b dissociation, in the ring and in the tail, respectively. This work shows the potentiality of ECD for structural characterization of peptide topoisomers, as well as the effect of conformation on hydrogen migration subsequent to electron capture

    Ground state of the random-bond spin-1 Heisenberg chain

    Full text link
    Stochastic series expansion quantum Monte Carlo is used to study the ground state of the antiferromagnetic spin-1 Heisenberg chain with bond disorder. Typical spin- and string-correlations functions behave in accordance with real-space renormalization group predictions for the random-singlet phase. The average string-correlation function decays algebraically with an exponent of -0.378(6), in very good agreement with the prediction of −(3−5)/2≃−0.382-(3-\sqrt{5})/2\simeq -0.382, while the average spin-correlation function is found to decay with an exponent of about -1, quite different from the expected value of -2. By implementing the concept of directed loops for the spin-1 chain we show that autocorrelation times can be reduced by up to two orders of magnitude.Comment: 9 pages, 10 figure

    Bronchial mucosal mast cells in asymptomatic smokers relation to structure, lung function and emphysema

    Get PDF
    AbstractThe pathologic mechanisms of chronic obstructive pulmonary disease (COPD) most certainly involves neutrophil granulocytes, cytotoxic T-cells, macophages and mast cells. The aim of this study was to investigate the relation between the number of mast cells in different compartments in bronchial biopsies of central proximal airways to structural changes, lung function tests and emphysema detected by high resolution computed tomography (HRCT).Twenty nine asymptomatic smoking and 16 never-smoking men from a population study were recruited. Central bronchial biopsies were stained to identify mast cells by immunohistochemistry. The number of mast cells in the epithelium, lamina propria and smooth muscle as well as epithelial integrity and thickness of the tenascin and laminin layer were determined.Smokers had increased numbers of mast cells in all compartments (P<0.001). Structural changes were correlated to mast cell numbers with the closest associations to mast cell numbers in the smooth muscle [epithelial integrity (Rs=−0.48, P=0.008), laminin layer (Rs=0.63, P=0.0002), tenascin layer (Rs=0.40, P=0.03)]. Similar correlations between mast cells and lung function tests were seen [functional residual capacity (FRC) (Rs=0.60, P=0.0006), total lung capacity (TLC) (Rs=0.44, P=0.02) and residual volume (RV) (Rs=0.41, P=0.03)]. No correlations could be detected between mast cells and FEV1 or to emphysema.Smoking is associated with an increase of mast cells in all compartments of the bronchial mucosa, including smooth muscle, and this is related to altered airway structure and function

    Ground-state properties of a supersymmetric fermion chain

    Full text link
    We analyze the ground state of a strongly interacting fermion chain with a supersymmetry. We conjecture a number of exact results, such as a hidden duality between weak and strong couplings. By exploiting a scale free property of the perturbative expansions, we find exact expressions for the order parameters, yielding the critical exponents. We show that the ground state of this fermion chain and another model in the same universality class, the XYZ chain along a line of couplings, are both written in terms of the same polynomials. We demonstrate this explicitly for up to N = 24 sites, and provide consistency checks for large N. These polynomials satisfy a recursion relation related to the Painlev\'e VI differential equation, and using a scale-free property of these polynomials, we derive a simple and exact formula for their limit as N goes to infinity.Comment: v2: added more information on scaling function, fixed typo
    • 

    corecore