126 research outputs found

    Quantum geometrodynamics: whence, whither?

    Full text link
    Quantum geometrodynamics is canonical quantum gravity with the three-metric as the configuration variable. Its central equation is the Wheeler--DeWitt equation. Here I give an overview of the status of this approach. The issues discussed include the problem of time, the relation to the covariant theory, the semiclassical approximation as well as applications to black holes and cosmology. I conclude that quantum geometrodynamics is still a viable approach and provides insights into both the conceptual and technical aspects of quantum gravity.Comment: 25 pages; invited contribution for the Proceedings of the seminar "Quantum Gravity: Challenges and Perspectives", Bad Honnef, Germany, April 200

    Dark Energy and Gravity

    Full text link
    I review the problem of dark energy focusing on the cosmological constant as the candidate and discuss its implications for the nature of gravity. Part 1 briefly overviews the currently popular `concordance cosmology' and summarises the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as the candidate and emphasises why no other approach really solves the conceptual problems usually attributed to the cosmological constant. Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract the key ingredients which must be present in any viable solution. I argue that (i)the cosmological constant problem cannot be satisfactorily solved until gravitational action is made invariant under the shift of the matter lagrangian by a constant and (ii) this cannot happen if the metric is the dynamical variable. Hence the cosmological constant problem essentially has to do with our (mis)understanding of the nature of gravity. Part 3 discusses an alternative perspective on gravity in which the action is explicitly invariant under the above transformation. Extremizing this action leads to an equation determining the background geometry which gives Einstein's theory at the lowest order with Lanczos-Lovelock type corrections. (Condensed abstract).Comment: Invited Review for a special Gen.Rel.Grav. issue on Dark Energy, edited by G.F.R.Ellis, R.Maartens and H.Nicolai; revtex; 22 pages; 2 figure

    Characterisation of a cobalt-60 small-beam animal irradiator using a realtime silicon pixelated detector

    No full text
    The paper presents a study performed by the Centre for Medical Radiation Physics (CMRP) using a high spatial and temporal resolution silicon pixelated detector named MagicPlate- 512. The study focuses on the characterisation of three pencil beams from a low-dose rate, 6 TBq, cobalt-60 source, in terms of percentage depth dose, beam profiles, output factor and shutter timing. Where applicable, the findings were verified against radiochromic EBT3 film and ionization chambers. It was found that the results of the MagicPlate-512 and film agreed within 0.9 mm for penumbra and full-width at half-maximum measurements of the beam profiles, and within 0.75% for percentage depth dose study. The dose rate of the cobalt-60 source was determined to be (10.65±0.03) cGy/min at 1.5 cm depth in Solid Water. A significant asymmetry of the small pencil beam profile was found, which is due to the irregular machining of the small collimator. The average source shutter speed was calculated to be 26 cm/s. The study demonstrates that the MagicPlate-512 dosimetry system, developed at CMRP, is capable of beam characterisation even in cases of very low dose rate sources
    corecore