966 research outputs found

    An improved perturbation approach to the 2D Edwards polymer -- corrections to scaling

    Full text link
    We present the results of a new perturbation calculation in polymer statistics which starts from a ground state that already correctly predicts the long chain length behaviour of the mean square end--to--end distance ⟨RN2⟩ \langle R_N^2 \rangle\ , namely the solution to the 2~dimensional~(2D) Edwards model. The ⟨RN2⟩\langle R_N^2 \rangle thus calculated is shown to be convergent in NN, the number of steps in the chain, in contrast to previous methods which start from the free random walk solution. This allows us to calculate a new value for the leading correction--to--scaling exponent~Δ\Delta. Writing ⟨RN2⟩=AN2ν(1+BN−Δ+CN−1+...)\langle R_N^2 \rangle = AN^{2\nu}(1+BN^{-\Delta} + CN^{-1}+...), where ν=3/4\nu = 3/4 in 2D, our result shows that Δ=1/2\Delta = 1/2. This value is also supported by an analysis of 2D self--avoiding walks on the {\em continuum}.Comment: 17 Pages of Revtex. No figures. Submitted to J. Phys.

    Functional Sequential Treatment Allocation

    Full text link
    Consider a setting in which a policy maker assigns subjects to treatments, observing each outcome before the next subject arrives. Initially, it is unknown which treatment is best, but the sequential nature of the problem permits learning about the effectiveness of the treatments. While the multi-armed-bandit literature has shed much light on the situation when the policy maker compares the effectiveness of the treatments through their mean, much less is known about other targets. This is restrictive, because a cautious decision maker may prefer to target a robust location measure such as a quantile or a trimmed mean. Furthermore, socio-economic decision making often requires targeting purpose specific characteristics of the outcome distribution, such as its inherent degree of inequality, welfare or poverty. In the present paper we introduce and study sequential learning algorithms when the distributional characteristic of interest is a general functional of the outcome distribution. Minimax expected regret optimality results are obtained within the subclass of explore-then-commit policies, and for the unrestricted class of all policies

    Gender differences in outcomes of patients with cystic fibrosis

    Get PDF
    Background: Cystic fibrosis (CF) is a common life-shortening genetic disease in which women have been described to have worse outcomes than males, particularly in response to respiratory infections with Pseudomonas aeruginosa. However, as advancements in therapies have improved life expectancy, this gender disparity has been challenged. The objective of this study is to examine whether a gender-based survival difference still exists in this population and determine the impact of common CF respiratory infections on outcomes in males versus females with CF. Methods: We conducted a retrospective cohort analysis of 32,766 patients from the United States Cystic Fibrosis Foundation Patient Registry over a 13-year period. Kaplan-Meier and Cox proportional hazards models were used to compare overall mortality and pathogen based survival rates in males and females. Results: Females demonstrated a decreased median life expectancy (36.0 years; 95% confidence interval [CI] 35.0–37.3) compared with men (38.7 years; 95% CI 37.8–39.6; p<0.001). Female gender proved to be a significant risk factor for death (hazard ratio 2.22, 95% CI 1.79–2.77), despite accounting for variables known to influence CF mortality. Women were also found to become colonized earlier with several bacteria and to have worse outcomes with common CF pathogens. Conclusions: CF women continue to have a shortened life expectancy relative to men despite accounting for key CF-related comorbidities. Women also become colonized with certain common CF pathogens earlier than men and show a decreased life expectancy in the setting of respiratory infections. Explanations for this gender disparity are only beginning to be unraveled and further investigation into mechanisms is needed to help develop therapies that may narrow this gender gap

    Comparison between resistive and collisionless double tearing modes for nearby resonant surfaces

    Get PDF
    The linear instability and nonlinear dynamics of collisional (resistive) and collisionless (due to electron inertia) double tearing modes (DTMs) are compared with the use of a reduced cylindrical model of a tokamak plasma. We focus on cases where two q = 2 resonant surfaces are located a small distance apart. It is found that regardless of the magnetic reconnection mechanism, resistivity or electron inertia, the fastest growing linear eigenmodes may have high poloidal mode numbers m ~ 10. The spectrum of unstable modes tends to be broader in the collisionless case. In the nonlinear regime, it is shown that in both cases fast growing high-m DTMs lead to an annular collapse involving small magnetic island structures. In addition, collisionless DTMs exhibit multiple reconnection cycles due to reversibility of collisionless reconnection and strong ExB flows. Collisionless reconnection leads to a saturated stable state, while in the collisional case resistive decay keeps the system weakly dynamic by driving it back towards the unstable equilibrium maintained by a source term.Comment: 15 pages, 9 figure

    A description of the ratio between electric and magnetic proton form factors by using space-like, time-like data and dispersion relations

    Full text link
    We use the available information on the ratio between the electric and magnetic proton form factors coming from recently published space-like data and from the few available time-like data. We apply a dispersive procedure on these data to evaluate the behaviour of this ratio, as a complex function, for all values of q^2.Comment: 12 pages, 7 Encapsulated Postscript figures, uses epsfig, rotating, exscale, amsmath, cite, latexsym, graphics, color packages, added reference

    On radiative corrections for unpolarized electron proton elastic scattering

    Get PDF
    A statistical analysis of the elastic unpolarized electron proton scattering data shows that, at large momentum transfer, the size and the ϵ\epsilon dependence of the radiative corrections, as traditionally calculated and applied, may induce large correlations of the parameters of the Rosenbluth fit, which prevent a correct extraction of the electric proton form factor. Using the electron QED structure (radiation) function approach the cross section of elastic electron-proton scattering in leading and next-to leading approximations is calculated and expressed as a correction to the Born cross section, which is different for the electric and the magnetic contribution. When properly applied to the data, it may give the solution to the problem of the discrepancy of the polarized and unpolarized results on electron proton scattering.Comment: 11 pagex, 5 figure

    Effect of binary collisions on electron acceleration in magnetic reconnection

    Get PDF
    Context. The presence of energetic X-ray sources in the solar corona indicates there are additional transport effects in the acceleration region. A prime method of investigation is to add collisions into models of particle behaviour at the reconnection region.&lt;p&gt;&lt;/p&gt; Aims. We investigate electron test particle acceleration in a simple model of an X-type reconnection region. In particular, we explore the possibility that collisions will cause electrons to re-enter the acceleration more frequently, in turn causing particles to be accelerated to high energies.&lt;p&gt;&lt;/p&gt; Methods. The deterministic (Lorentz) description of particle gyration and acceleration has been coupled to a model for the effects of collisions. The resulting equations are solved numerically using Honeycutt’s extension of the RK4 method to stochastic differential equations. This approach ensures a correct description of collisional energy loss and pitch-angle scattering combined with a sufficiently precise description of gyro-motion and acceleration.&lt;p&gt;&lt;/p&gt; Results. Even with initially mono-energetic electrons, the competition between collisions and acceleration results in a distribution of electron energies. When realistic model parameters are used, electrons achieve X-ray energies. A possible model for coronal hard X-ray sources is indicated. Conclusions. Even in competition with energy losses, pitch-angle scattering results in a small proportion of electrons reaching higher energies than they would in a collisionless situation.&lt;p&gt;&lt;/p&gt

    Turbulence in Clusters of Galaxies and X-Ray Line Profiles

    Full text link
    Large-scale bulk motions and hydrodynamic turbulence in the intergalactic gas inside clusters of galaxies significantly broaden X-ray emission lines. For lines of heavy ions (primarily helium-like and hydrogen-like iron ions), the hydrodynamic broadening is significantly larger than the thermal broadening. Since cluster of galaxies have a negligible optical depth for resonant scattering in forbidden and intercombination lines of these ions, these lines are not additionally broadened. At the same time, they are very intense, which allows deviations of the spectrum from the Gaussian spectrum in the line wings to be investigated. The line shape becomes an important indicator of bulk hydrodynamic processes because the cryogenic detectors of new generation of X-ray observatories will have a high energy resolution (from 5 eV for ASTRO-E2 to 1-2 eV for Constellation-X and XEUS). We use the spectral representation of a Kolmogorov cascade in the inertial range to calculate the characteristic shapes of X-ray lines. Significant deviations in the line profiles from the Gaussian profile (shape asymmetry, additional peaks, sharp breaks in the exponential tails) are expected for large-scale turbulence. The kinematic SZ effect and the X-ray line profile carry different information about the hydrodynamic velocity distribution in clusters of galaxies and complement each other, allowing the redshift, the peculiar velocity of the cluster, and the bulk velocity dispersion to be measured and separatedComment: 29 pages, 12 figures, Astronomy Letters 2003, v.29, p.79
    • …
    corecore