43 research outputs found
Specific Heat of Liquid Helium in Zero Gravity very near the Lambda Point
We report the details and revised analysis of an experiment to measure the
specific heat of helium with subnanokelvin temperature resolution near the
lambda point. The measurements were made at the vapor pressure spanning the
region from 22 mK below the superfluid transition to 4 uK above. The experiment
was performed in earth orbit to reduce the rounding of the transition caused by
gravitationally induced pressure gradients on earth. Specific heat measurements
were made deep in the asymptotic region to within 2 nK of the transition. No
evidence of rounding was found to this resolution. The optimum value of the
critical exponent describing the specific heat singularity was found to be a =
-0.0127+ - 0.0003. This is bracketed by two recent estimates based on
renormalization group techniques, but is slightly outside the range of the
error of the most recent result. The ratio of the coefficients of the leading
order singularity on the two sides of the transition is A+/A- =1.053+ - 0.002,
which agrees well with a recent estimate. By combining the specific heat and
superfluid density exponents a test of the Josephson scaling relation can be
made. Excellent agreement is found based on high precision measurements of the
superfluid density made elsewhere. These results represent the most precise
tests of theoretical predictions for critical phenomena to date.Comment: 27 Pages, 20 Figure
Elasticity and Petri nets
Digital electronic systems typically use synchronous clocks and primarily assume fixed duration of their operations to simplify the design process. Time elastic systems can be constructed either by replacing the clock with communication handshakes (asynchronous version) or by augmenting the clock with a synchronous version of a handshake (synchronous version). Time elastic systems can tolerate static and dynamic changes in delays (asynchronous case) or latencies (synchronous case) of operations that can be used for modularity, ease of reuse and better power-delay trade-off. This paper describes methods for the modeling, performance analysis and optimization of elastic systems using Marked Graphs and their extensions capable of describing behavior with early evaluation. The paper uses synchronous elastic systems (aka latency-tolerant systems) for illustrating the use of Petri nets, however, most of the methods can be applied without changes (except changing the delay model associated with events of the system) to asynchronous elastic systems.Peer ReviewedPostprint (author's final draft
Stereospecific deoxygenation of epoxides with sodium(cyclopentadienyl)dicarbonylferrate. Inversion of olefin stereochemistry.
Psychedelics for Psychological and Existential Distress in Palliative and Cancer Care
In recent years, there has been renewed scientific interest in, and associated media coverage of, psychedelics. [...
Psychedelics for Psychological and Existential Distress in Palliative and Cancer Care
In recent years, there has been renewed scientific interest in, and associated media coverage of, psychedelics. [...]</jats:p
