279 research outputs found

    Comparing Infrared Star-Formation Rate Indicators with Optically-Derived Quantities

    Full text link
    We examine the UV reprocessing efficiencies of warm dust and polycyclic aromatic hydrocarbons (PAHs) through an analysis of the mid- and far-infrared surface luminosity densities of 85 nearby Hα\alpha-selected star-forming galaxies detected by the volume-limited KPNO International Spectroscopic Survey (KISS). Because Hα\alpha selection is not biased toward continuum-bright objects, the KISS sample spans a wide range in stellar masses (10810^8-1012M⊙10^{12}\rm{M}_\odot), as well as Hα\alpha luminosity (103910^{39}-1043ergs/s10^{43}\rm{ergs/s}), mid-infrared 8.0ÎŒ\mum luminosity (104110^{41}-1044ergs/s10^{44}\rm{ergs/s}), and [Bw-R] color (-.1-2.2). We find that mid-infrared polycyclic aromatic hydrocarbon (PAH) emission in the Spitzer IRAC 8.0ÎŒ\mum band correlates with star formation, and that the efficiency with which galaxies reprocess UV energy into PAH emission depends on metallicity. We also find that the relationship between far-infrared luminosity in the Spitzer MIPS 24ÎŒ\mum band pass and Hα\alpha-measured star-formation rate varies from galaxy to galaxy within our sample; we do not observe a metallicity dependence in this relationship. We use optical colors and established mass-to-light relationships to determine stellar masses for the KISS galaxies; we compare these masses to those of nearby galaxies as a confirmation that the volume-limited nature of KISS avoids strong biases. We also examine the relationship between IRAC 3.6ÎŒ\mum luminosity and galaxy stellar mass, and find a color-dependent correlation between the two.Comment: 15 pages, 10 figure

    The Arecibo Dual-Beam Survey: The HI Mass Function of Galaxies

    Full text link
    We use the HI-selected galaxy sample from the Arecibo Dual-Beam Survey (Rosenberg & Schneider 2000) to determine the shape of the HI mass function of galaxies in the local universe using both the step-wise maximum likelihood and the 1/V_tot methods. Our survey region spanned all 24 hours of right ascension at selected declinations between 8 and 29 degrees covering ~430 deg^2 of sky in the main beam. The survey is not as deep as some previous Arecibo surveys, but it has a larger total search volume and samples a much larger area of the sky. We conducted extensive tests on all aspects of the galaxy detection process, allowing us to empirically correct for our sensitivity limits, unlike the previous surveys. The mass function for the entire sample is quite steep, with a power-law slope of \alpha ~ -1.5. We find indications that the slope of the HI mass function is flatter near the Virgo cluster, suggesting that evolutionary effects in high density environments may alter the shape of the HI mass function. These evolutionary effects may help to explain differences in the HI mass function derived by different groups. We are sensitive to the most massive sources (log M > 5x10^10 M\solar) over most of the declination range, \~1 sr, and do not detect any massive low surface brightness galaxies. These statistics restrict the population of Malin 1-like galaxies to <5.5x10^-6 Mpc^-3.Comment: ApJ accepted, 12 page

    The Arecibo Dual-Beam Survey: Arecibo and VLA Observations

    Full text link
    The Arecibo Dual-Beam Survey is a "blind" 21 cm search for galaxies covering \~430 deg^2 of sky. We present the data from the detection survey as well as from the follow-up observations to confirm detections and improve positions and flux measurements. We find 265 galaxies, many of which are extremely low surface brightness. Some of these previously uncataloged galaxies lie within the zone of avoidance where they are obscured by the gas and dust in our Galaxy. 81 of these sources are not previously cataloged optically and there are 11 galaxies that have no associated optical counterpart or are only tentatively associated with faint wisps of nebulosity on the Digitized Sky Survey images. We discuss the properties of the survey and in particular we make direct determinations of the completeness and reliability of the sample. The behavior of the completeness and its dependencies is essential for determining the HI mass function. We leave the discussion of the mass function for a later paper, but do note that we find many low surface brightness galaxies and 7 sources with M_HI < 10^8 Msolar.Comment: 23 pages, 20 figures, accepted ApJS. For tables 2 and 3 only the first page has been included. ASCII tables are provided separatel

    The Diverse Infrared Properties of a Complete Sample of Star-Forming Dwarf Galaxies

    Full text link
    We present mid-infrared Spitzer Space Telescope observations of a complete sample of star-forming dwarf galaxies selected from the KPNO International Spectroscopic Survey. The galaxies span a wide range in mid-infrared properties. Contrary to expectations, some of the galaxies emit strongly at 8 micron indicating the presence of hot dust and/or PAHs. The ratio of this mid-infrared dust emission to the stellar emission is compared with the galaxies' luminosity, star-formation rate, metallicity, and optical reddening. We find that the strength of the 8.0 micron dust emission to the stellar emission ratio is more strongly correlated with the star-formation rate than it is with the metallicity or the optical reddening in these systems. Nonetheless, there is a correlation between the 8.0 micron luminosity and metallicity. The slope of this luminosity-metallicity correlation is shallower than corresponding ones in the B-band and 3.6 micron. The precise nature of the 8.0 micron emission seen in these galaxies (i.e., PAH versus hot dust or some combination of the two) will require future study, including deep mid-IR spectroscopy.Comment: 14 pages, accepted Ap

    Discovery of a Metal-Line Absorber Associated with a Local Dwarf Starburst Galaxy

    Get PDF
    We present optical and near-infrared images, H I 21 cm emission maps, optical spectroscopy, and Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet spectroscopy of the QSO/galaxy pair SBS 1122+594/IC 691. The QSO sight line lies at a position angle of 27 degrees from the minor axis of the nearby dwarf starburst galaxy IC 691 (cz_gal = 1204+-3 km/s, L_B ~ 0.09 L*, current star formation rate = 0.08-0.24 solar masses per year) and 33 kpc (6.6 arcmin) from its nucleus. We find that IC 691 has an H I mass of M_HI = (3.6+-0.1) x 10^8 solar masses and a dynamical mass of M_dyn = (3.1+-0.5) x 10^10 solar masses. The UV spectrum of SBS 1122+594 shows a metal-line (Ly-alpha + C IV) absorber near the redshift of IC 691 at cz_abs = 1110+-30 km/s. Since IC 691 is a dwarf starburst and the SBS 1122+594 sight line lies in the expected location for an outflowing wind, we propose that the best model for producing this metal-line absorber is a starburst wind from IC 691. We place consistent metallicity limits on IC 691 ([Z/Zsun] ~ -0.7) and the metal-line absorber ([Z/Zsun] < -0.3). We also find that the galaxy's escape velocity at the absorber location is v_esc = 80+-10 km/s and derive a wind velocity of v_w = 160+-50 km/s. Thus, the evidence suggests that IC 691 produces an unbound starburst wind that escapes from its gravitational potential to transport metals and energy to the surrounding intergalactic medium.Comment: 31 pages, 8 figures; AJ in press; a version with high resolution figures can be downloaded from http://casa.colorado.edu/~keeney/research/papers/IC691.pd

    Discovery of a Dwarf Post-Starburst Galaxy Near a High Column Density Ly-alpha Absorber

    Full text link
    We report the discovery of a dwarf (M_B = -13.9) post-starburst galaxy coincident in recession velocity (within uncertainties) with the highest column density absorber (N_HI = 10^15.85 cm^{-2} at cz = 1586 km/s) in the 3C~273 sightline. This galaxy is by far the closest galaxy to this absorber, projected just 71 kpc on the sky from the sightline. The mean properties of the stellar populations in this galaxy are consistent with a massive starburst ~3.5 Gyrs ago, whose attendant supernovae, we argue, could have driven sufficient gas from this galaxy to explain the nearby absorber. Beyond the proximity on the sky and in recession velocity, the further evidence in favor of this conclusion includes both a match in the metallicities of absorber and galaxy, and the fact that the absorber has an overabundance of Si/C, suggesting recent type II supernova enrichment. Thus, this galaxy and its ejecta are the expected intermediate stage in the fading dwarf evolutionary sequence envisioned by Babul & Rees to explain the abundance of faint blue galaxies at intermediate redshifts.Comment: 33 pages, 4 figures, ApJ in pres
    • 

    corecore