36 research outputs found
Fasting Upregulates PPARα Target Genes in Brain and Influences Pituitary Hormone Expression in a PPARα Dependent Manner
PPARα
is a lipid-activable transcription factor that mediates the adaptive response to
fasting. Recent data indicate an important role of brain PPARα in physiological functions.
However, it has not yet been shown whether PPARα
in brain can be activated in the fasting state. Here we demonstrate that fasting of rats increased mRNA concentrations of typical
PPARα target genes implicated in β-oxidation of fatty acids (acyl-CoA oxidase, carnitine palmitoyltransferase-1, medium chain acyl-CoA dehydrogenase) and ketogenesis
(mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase) in pituitary gland and partially also in frontal cortex and diencephalon compared to nonfasted animals. These data strongly indicate that fasting activates PPARα in brain and pituitary gland. Furthermore,
pituitary prolactin and luteinizing hormone-β
mRNA concentrations were increased upon
fasting in wild-type mice but not in mice lacking PPARα. For proopiomelanocortin and thyrotropin-β, genotype-specific differences in pituitary mRNA concentrations were
observed. Thus, PPARα seems to be involved in transcriptional regulation of pituitary hormones
Changes in physical activity and health-related quality of life during the first year after total knee arthroplasty,”
Objective. Despite its impact on the overall outcome and health-related quality of life (HRQOL) after knee surgery, physical activity has not been investigated directly using accelerometry or step monitoring during the first year after total knee arthroplasty (TKA) due to osteoarthritis (OA). Therefore, the present study aimed to evaluate the development of physical activity over 12 months after surgery and its relationship to clinical outcome and HRQOL. Methods. Fifty-three patients scheduled for primary TKA due to OA were measured with the DynaPort ADL monitor and a step activity monitor preoperatively and at 2, 6, and 12 months of followup. Clinical outcome and HRQOL were investigated using the American Knee Society Score (KSS) and Short Form 36 (SF-36) health survey. Results. Physical activity increased significantly within 12 months of followup (from mean ؎ SD 4,993 ؎ 2,170 gait cycles preoperatively to 5,932 ؎ 2,111 gait cycles; P ؍ 0.003). Clinical outcome and HRQOL improved from baseline (mean ؎ SD KSS 88.9 ؎ 21.4, mean ؎ SD SF-36 43.1 ؎ 18.4) to 12 months of followup (mean ؎ SD KSS 188.6 ؎ 10.9; P ؍ 0.001 and mean ؎ SD SF-36 82.5 ؎ 15.9; P ؍ 0.001). Physical activity parameters did not correlate with clinical outcome. Conclusion. TKA offers profound improvements of physical activity for the majority of patients. Despite these improvements and the excellent clinical outcome, most patients do not reach the level of physical activity reported for healthy subjects. The activity level after treatment seems to be influenced by physical activity behavior prior to surgery rather than by the treatment itself
Walking ability during daily life in patients with osteoarthritis of the knee or the hip and lumbar spinal stenosis: a cross sectional study
<p>Abstract</p> <p>Background</p> <p>Degenerative musculoskeletal disorders are among the most frequent diseases occurring in adulthood, often impairing patients' functional mobility and physical activity. The aim of the present study was to investigate and compare the impact of three frequent degenerative musculoskeletal disorders -- knee osteoarthritis (knee OA), hip osteoarthritis (hip OA) and lumbar spinal stenosis (LSS) -- on patients' walking ability.</p> <p>Methods</p> <p>The study included 120 participants, with 30 in each patient group and 30 healthy control individuals. A uniaxial accelerometer, the StepWatch™ Activity Monitor (Orthocare Innovations, Seattle, Washington, USA), was used to determine the volume (number of gait cycles per day) and intensity (gait cycles per minute) of walking ability. Non-parametric testing was used for all statistical analyses.</p> <p>Results</p> <p>Both the volume and the intensity of walking ability were significantly lower among the patients in comparison with the healthy control individuals (p < 0.001). Patients with LSS spent 0.4 (IQR 2.8) min/day doing moderately intense walking (>50 gait cycles/min), which was significantly lower in comparison with patients with knee and hip OA at 2.5 (IQR 4.4) and 3.4 (IQR 16.1) min/day, respectively (p < 0.001). No correlations between demographic or anthropometric data and walking ability were found. No technical problems or measuring errors occurred with any of the measurements.</p> <p>Conclusions</p> <p>Patients with degenerative musculoskeletal disorders suffer limitations in their walking ability. Objective assessment of walking ability appeared to be an easy and feasible tool for measuring such limitations as it provides baseline data and objective information that are more precise than the patients' own subjective estimates. In everyday practice, objective activity assessment can provide feedback for clinicians regarding patients' performance during everyday life and the extent to which this confirms the results of clinical investigations. The method can also be used as a way of encouraging patients to develop a more active lifestyle.</p
Early decrements in bone density after completion of neoadjuvant chemotherapy in pediatric bone sarcoma patients
<p>Abstract</p> <p>Background</p> <p>Bone mineral density (BMD) accrual during childhood and adolescence is important for attaining peak bone mass. BMD decrements have been reported in survivors of childhood bone sarcomas. However, little is known about the onset and development of bone loss during cancer treatment. The objective of this cross-sectional study was to evaluate BMD in newly diagnosed Ewing's and osteosarcoma patients by means of dual-energy x-ray absorptiometry (DXA) after completion of neoadjuvant chemotherapy.</p> <p>Methods</p> <p>DXA measurements of the lumbar spine (L2-4), both femora and calcanei were performed perioperatively in 46 children and adolescents (mean age: 14.3 years, range: 8.6-21.5 years). Mean <it>Z</it>-scores, areal BMD (g/cm<sup>2</sup>), calculated volumetric BMD (g/cm<sup>3</sup>) and bone mineral content (BMC, g) were determined.</p> <p>Results</p> <p>Lumbar spine mean Z-score was -0.14 (95% CI: -0.46 to 0.18), areal BMD was 1.016 g/cm<sup>2 </sup>(95% CI: 0.950 to 1.082) and volumetric BMD was 0.330 g/cm<sup>3 </sup>(95% CI: 0.314 to 0.347) which is comparable to healthy peers. For patients with a lower extremity tumor (n = 36), the difference between the affected and non-affected femoral neck was 12.1% (95% CI: -16.3 to -7.9) in areal BMD. The reduction of BMD was more pronounced in the calcaneus with a difference between the affected and contralateral side of 21.7% (95% CI: -29.3 to -14.0) for areal BMD. Furthermore, significant correlations for femoral and calcaneal DXA measurements were found with Spearman-rho coefficients ranging from ρ = 0.55 to ρ = 0.80.</p> <p>Conclusions</p> <p>The tumor disease located in the lower extremity in combination with offloading recommendations induced diminished BMD values, indicating local osteopenia conditions. However, the results revealed no significant decrements of lumbar spine BMD in pediatric sarcoma patients after completion of neoadjuvant chemotherapy. Nevertheless, it has to be taken into account that bone tumor patients may experience BMD decrements or secondary osteoporosis in later life. Furthermore, the peripheral assessment of BMD in the calcaneus via DXA is a feasible approach to quantify bone loss in the lower extremity in bone sarcoma patients and may serve as an alternative procedure, when the established assessment of femoral BMD is not practicable due to endoprosthetic replacements.</p
Die Rolle von enterischen Gliazellen unter entzündlichen Bedingungen im Darm
The enteric nervous system (ENS) innervates the gastrointestinal (GI) tract and controls central aspects of GI physiology including contractility of the intestinal musculature, glandular secretion and intestinal blood flow. The ENS is composed of neurons that conduct electrical signals and of enteric glial cells (EGCs). EGCs resemble central nervous system (CNS) astrocytes in their morphology and in the expression of shared markers such as the intermediate filament protein glial fibrillary acidic protein (GFAP). They are strategically located at the interface of ENS neurons and their effector cells to modulate intestinal motility, epithelial barrier stability and inflammatory processes. The specific contributions of EGCs to the maintenance of intestinal homeostasis are subject of current research.
From a clinical point of view EGC involvement in pathophysiological processes such as intestinal inflammation is highly relevant. Like CNS astrocytes ECGs can acquire a reactive, tissue-protective phenotype in response to intestinal injury. In patients with chronic inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis, alterations in the EGC network are well known, particularly a differential expression of GFAP, which is a hallmark of reactive gliosis in the CNS.
With increasing recognition of the role of EGCs in intestinal health and disease comes the need to study the glial population in its complexity. The overall aim of this thesis was to comprehensively study EGCs with focus on the reactive GFAP-expressing subpopulation under inflammatory conditions in vivo and in vitro. In a first step, a novel in vivo rat model of acute systemic inflammation mimicking sepsis was employed to investigate rapidly occuring responses of EGCs to inflammation. This study revealed that within a short time frame of a few hours, EGCs responded to the inflammation with an upregulation of Gfap gene expression. This inflammation-induced upregulation was confined to the myenteric plexus and varied in intensity along the intestinal rostro-caudal axis. This highly responsive myenteric GFAP-expressing EGC population was further characterized in vivo andin vitro using a transgenic mouse model (hGFAP-eGFP mice). Primary purified murine GFAP-EGC cultures in vitro were established and it was assessed how the transcriptomic and proteomic profiles of these cells change upon inflammatory stimulation. Here, myenteric GFAP-EGCs were found to undergo a shift in gene expression profile that predominantly affects expression of genes associated with inflammatory responses. Further, a secretion of inflammatory mediators was validated on protein level. The GFAP+ subpopulation is hence an active participant in inflammatory pathophysiology. In an acute murine IBD model in vivo, GFAP-EGCs were found to express components of the major histocompatibility complex (MHC) class II in inflamed tissue, which also indicates a crosstalk of EGCs with the innate and the adaptive lamina propria immune system in acute inflammation.
Taken together, this work advances our knowledge on EGC (patho-)physiology by identifying and characterizing an EGC subpopulation rapidly responsive to inflammation. This study further provides the transcriptomic profile of this population in vivo and in vitro, which can be used to identify targets for therapeutic intervention. Due to the modulating influence of EGCs on the intestinal microenvironment, the study further underlines the importance of integrating EGCs into in vitro test systems that aim to model intestinal tissues in vitro and presents an outlook on a potential strategy.Das enterische Nervensystem (ENS) innerviert den gastrointestinalen Trakt und kontrolliert zentrale Aspekte der gastrointetinalen Physiologie, wie die Kontraktilität der intestinalen Muskulatur, Sekretion und den intestinalen Blutfluss. Das ENS setzt sich aus elektrisch leitenden Neuronen und enterischen Gliazellen (EGZ) zusammen. EGZ ähneln Astrozyten des zentralen Nervensystems (ZNS) hinsichtlich ihrer Morphologie und der Expression gemeinsamer Marker wie dem Intermediärfilament Saures Gliafaserprotein (GFAP von engl. glial fibrillary acidic protein). EGZ sind strategisch an der Kontaktstelle zwischen ENS-Neuronen und deren Effektorzellen positioniert, um die intestinale Motilität, die epitheliale Barrierestabilität sowie inflammatorischen Prozesse zu modulieren. Die spezifische Beteiligung der EGZ an der Aufrechterhaltung der Darmhomöostase wird gegenwärtig erforscht.
Aus klinischer Sicht ist die Beteiligung von EGZ an pathophysiologischen Prozessen wie der intestinalen Entzündung besonders relevant. Wie ZNS-Astrozyten können EGZ bei intestinalen Schädigungen einen reaktiven, gewebe-protektiven Phänotyp annehmen. Bei Patienten mit chronisch-entzündlichen Darmerkrankungen (IBD, von engl. inflammatory bowel disease) wie Morbus Crohn und Colitis ulcerosa sind Veränderungen im EGZ-Netzwerk bekannt, besonders eine veränderte Expression von GFAP, welches ein prominentes Kennzeichen der reaktiven Gliose im ZNS ist.
Nachdem sich die Bedeutung der EGZ im gesunden und kranken Darm zunehmend herausgestellt hat, muss ein stärkerer Fokus auf die Erforschung der glialen Population gelegt werden. Die Zielsetzung dieser Arbeit war die umfassende Untersuchung der EGZ mit Fokus auf die reaktive GFAP-exprimierende Population unter entzündlichen Bedingungen in vivo und in vitro}. In einem ersten Schritt wurde ein neuartiges in vivo-Rattenmodell einer akuten systemischen Entzündung verwendet, um die schnell stattfindenden Veränderungen der EGZ unter entzündlichen Bedingungen zu untersuchen. Diese Studie ergab, dass innerhalb von wenigen Stunden EGZ mit einer Hochregulation der Gfap-Genexpression auf die Entzündung reagieren. Diese entzündungsinduzierte Hochregulation war lokal auf den myenterischen Plexus begrenzt und entlang der rostro-kaudalen Achse des Darms unterschiedlich stark ausgeprägt. Die responsive, GFAP-exprimierende myenterische EGZ-Population wurde daraufhin in vivo und in vitro charakterisiert unter Zuhilfenahme eines transgenen Mausmodells (hGFAP-eGFP-exprimierende Mäuse). Primäre, aufgereinigte GFAP-EGZ-Zellkulturen wurden etabliert und dahingehend untersucht, wie sich das transkriptomische und proteomische Profil der Population unter entzündlichen Bedingungen verändert. Hierbei wurde reproduzierbar eine Verschiebung des transkriptomischen Profils myenterischer GFAP-exprimierender EGZ gefunden. Die davon betroffenen Gene sind vorwiegend mit Immunantworten assoziiert. Weiterhin wurde die Sekretion solcher Immunmediatoren auf Proteinebene validiert. Die GFAP+ Subpopulation ist somit ein aktiver Modulator entzündlicher pathophysiologischer Prozesse. In einem akuten IBD-Mausmodell konnte weiterhin gezeigt werden, dass GFAP-EGZ verstärkt Komponenten des Haupthistokompatibilitätskomplex (MHC) Klasse II im entzündeten Gewebe exprimieren. Dies weist auf eine direkt Interaktion der EGZ mit dem Immunsystem in der Lamina propria hin.
Insgesamt konnte mit dieser Arbeit das Wissen über die (Patho-)Physiologie von EGZ erweitert werden, indem eine schnell responsive EGZ-Subpopulation identifizert und charakterisiert wurde. Weiterhin wurde im Rahmen dieser Arbeit das gesamte Transkriptomprofil der GFAP-Subpopulation in vivo und in vitro veröffentlicht, welches für weitere Studien zur Identifikation möglicher therapeutischer Anwendungen genutzt werden kann. Aufgrund des modulierenden Einflusses der EGZ auf die Darmphysiologie betont diese Studie die Notwendigkeit EGZs in in-vitro-Gewebemodelle des Darms zu integrieren und präsentiert einen Ausblick auf eine mögliche Strategie
Laser-capture microdissection for layer-specific analysis of enteric ganglia
The enteric nervous system (ENS) is the division of the autonomic nervous system that innervates the gastrointestinal (GI) tract and controls central intestinal functions such as peristalsis and fluid movement. Enteric nerve cell bodies (neurons and glia) are predominantly organized in ganglionated networks that are present along the entire length of the GI tract in multiple tissue layers. Most cell bodies are organized in the myenteric plexus allocated between the longitudinal and the circular muscle layers or in the submucosal plexus between muscle tissue and mucosa. The site-specific characteristics of these enteric nerve cells have traditionally been analyzed via imaging techniques. Laser-capture microdissection (LCM) offers the prospect of site-specifically analyzing the gene expression profiles of these different subpopulations. This protocol addresses critical aspects of handling intestinal tissue for ENS dissection, such as the optimal quick-staining procedure, suitable laser settings, and limits of tissue material required to successfully dissect and analyze tissue layers for gene expression
Clinical outcome and physical activity measured with StepWatch 3™ Activity Monitor after minimally invasive total hip arthroplasty
Abstract Background Subjective data and physical examinations of patients after total hip arthroplasty are used to assess the outcome. But regarding the physical activity, no objective data can be delivered by existing scores. The level of activity can be measured objectively by counting gait cycles. The aim of this study was to measure activity levels of patients before and after total hip arthroplasty (THA). Methods Forty-six patients were included in this prospective study. Western Ontario and McMaster Universities Arthritis Index (WOMAC), Harris Hip Score (HHS), and physical activity level based on the number of steps per day were assessed 1 week before surgery, 6 weeks postoperatively, and 3 months postoperatively. To assess the general constitution of the patients, the American Society of Anesthesiologists (ASA) score and BMI were determined. The physical activity level was measured by StepWatch 3™ Activity Monitor (SAM; Orthocare Innovations, Seattle, WA, USA). The number of GCs per day was assessed. Spearman’s rank correlation coefficients were used to identify an association between age, body mass index (BMI), and American Society of Anesthesiologists classification with the number of gait cycles and to detect correlation between GCs and HHS and GCs and WOMAC. Results From preoperatively to 6 weeks postoperatively, the number of gait cycles did not alter significantly. Three months postoperatively, the number of GC/d and GC/h improved significantly. HHS and WOMAC improved significantly from before surgery to 6 weeks and to 3 months follow-up. The number of gait cycles per day did not correlate with the HHS and the WOMAC score at any point of measurement. Age, BMI, and ASA classification did not influence the results. Conclusion By using a StepWatch 3™ Activity Monitor objective data about physical activity before and after THA can be measured reliable. Subjective and objective data in the postoperative period show different results. Physical activity seems to take longer to reach significantly improved values. By counting gait cycles, surgeons do have an additional tool to measure success after THA
Objectively measured versus self-reported physical activity in children and adolescents with cancer.
OBJECTIVE:Existing research recognizes low levels of physical activity in pediatric patients with cancer, but much uncertainty exists about their capability to self-reflect physical activity levels. The objective of this study was to compare results of subjective self-reports and objective accelerometers regarding levels of daily walking as well as moderate-to-vigorous physical activities. METHODS:Results of the objective assessment tool StepWatchTM Activity Monitor and self-reporting with a standardized questionnaire were compared in 28 children and adolescents during cancer treatment. RESULTS:The patients were 13.8±2.8 years of age and 3.4±2.0 months after cancer diagnosis. The Bland-Altman plots indicated a fairly symmetrical under- and over-estimation for daily minutes of walking with the limits of agreement ranging from -100.8 to 87.3 min (d = -6.7 min). Mean difference for moderate-to-vigorous physical activity was almost zero but limits of agreement are ranging from -126.8 to 126.9 min. The comparison for the days with at least 60 min of moderate-to-vigorous physical activity showed a marked difference with 3.0±2.6 self-reported days versus only 0.1±0.4 measured days. CONCLUSIONS:These findings suggest that physical activity in pediatric cancer patients should preferably be assessed with objective methods. Greater efforts are needed to implement supervised exercise interventions during treatment incorporating methods to improve self-reflection of physical activity