12,859 research outputs found

    X-ray Light Curves and Accretion Disk Structure of EX Hydrae

    Full text link
    We present X-ray light curves for the cataclysmic variable EX Hydrae obtained with the Chandra High Energy Transmission Grating Spectrometer and the Extreme Ultraviolet Explorer Deep Survey photometer. We confirm earlier results on the shape and amplitude of the binary light curve and discuss a new feature: the phase of the minimum in the binary light curve, associated with absorption by the bulge on the accretion disk, increases with wavelength. We discuss several scenarios that could account for this trend and conclude that, most likely, the ionization state of the bulge gas is not constant, but rather decreases with binary phase. We also conclude that photoionization of the bulge by radiation originating from the white dwarf is not the main source of ionization, but that it is heated by shocks originating from the interaction between the inflowing material from the companion and the accretion disk. The findings in this paper provide a strong test for accretion disk models in close binary systems.Comment: 19 pages, 4 figures, accepted for publication in the Ap

    Energy and momentum of cylindrical gravitational waves. II

    Full text link
    Recently Nathan Rosen and the present author obtained the energy and momentum densities of cylindrical gravitational waves in Einstein's prescription and found them to be finite and reasonable. In the present paper we calculate the same in prescriptions of Tolman as well as Landau and Lifshitz and discuss the results.Comment: 8 pages, LaTex, To appear in Pramana- J. Physic

    On Generating Gravity Waves with Matter and Electromagnetic Waves

    Full text link
    If a homogeneous plane light-like shell collides head-on with a homogeneous plane electromagnetic shock wave having a step-function profile then no backscattered gravitational waves are produced. We demonstrate, by explicit calculation, that if the matter is accompanied by a homogeneous plane electromagnetic shock wave with a step-function profile then backscattered gravitational waves appear after the collision.Comment: Latex file, 15 pages, accepted for publication in Physical Review

    Nonet Symmetry and Two-Body Decays of Charmed Mesons

    Full text link
    The decay of charmed mesons into pseudoscalar (P) and vector (V) mesons is studied in the context of nonet symmetry. We have found that it is badly broken in the PP channels and in the P sector of the PV channels as expected from the non-ideal mixing of the \eta and the \eta'. In the VV channels, it is also found that nonet symmetry does not describe the data well. We have found that this discrepancy cannot be attributed entirely to SU(3) breaking at the usual level of 20--30%. At least one, or both, of nonet and SU(3) symmetry must be very badly broken. The possibility of resolving the problem in the future is also discussed.Comment: 9 pages, UTAPHY-HEP-

    ORFEUS II and IUE Spectroscopy of EX Hydrae

    Get PDF
    Using ORFEUS-SPAS II FUV spectra, IUE UV spectra, and archival EUVE deep survey photometry, we present a detailed picture of the behavior of the magnetic cataclysmic variable EX Hydrae. Like HUT spectra of this source, the FUV and UV spectra reveal broad emission lines of He II, C II-IV, N III and V, O VI, Si III-IV, and Al III superposed on a continuum which is blue in the UV and nearly flat in the FUV. Like ORFEUS spectra of AM Her, the O VI doublet is resolved into broad and narrow emission components. Consistent with its behavior in the optical, the FUV and UV continuum flux densities, the FUV and UV broad emission line fluxes, and the radial velocity of the O VI broad emission component all vary on the spin phase of the white dwarf, with the maximum of the FUV and UV continuum and broad emission line flux light curves coincident with maximum blueshift of the broad O VI emission component. On the binary phase, the broad dip in the EUV light curve is accompanied by strong eclipses of the UV emission lines and by variations in both the flux and radial velocity of the O VI narrow emission component. The available data are consistent with the accretion funnel being the source of the FUV and UV continuum and the O VI broad emission component, and the white dwarf being the source of the O VI narrow emission component.Comment: 21 pages, 10 Postscript figures; LaTeX format, uses aaspp4.sty; table2.tex included separately because it must be printed sideways - see instructions in the file; accepted on 1999 Feb 20 for publication in The Astrophysical Journa

    Energy-Momentum Distribution: Some Examples

    Full text link
    In this paper, we elaborate the problem of energy-momentum in General Relativity with the help of some well-known solutions. In this connection, we use the prescriptions of Einstein, Landau-Lifshitz, Papapetrou and M\"{o}ller to compute the energy-momentum densities for four exact solutions of the Einstein field equations. We take the gravitational waves, special class of Ferrari-Ibanez degenerate solution, Senovilla-Vera dust solution and Wainwright-Marshman solution. It turns out that these prescriptions do provide consistent results for special class of Ferrari-Ibanez degenerate solution and Wainwright-Marshman solution but inconsistent results for gravitational waves and Senovilla-Vera dust solution.Comment: 20 pages, accepted for publication in Int. J. Mod. Phys.

    An EUV Study of the Intermediate Polar EX Hydrae

    Full text link
    On 2000 May 5, we began a large multi-wavelength campaign to study the intermediate polar, EX Hydrae. The simultaneous observations from six satellites and four telescopes were centered around a one million second observation with EUVE. Although EX Hydrae has been studied previously with EUVE, our higher signal-to-noise observations present new results and challenge the current IP models. Previously unseen dips in the light curve are reminiscent of the stream dips seen in polar light curves. Also of interest is the temporal extent of the bulge dip; approximately 0.5 in phase, implying that the bulge extends over half of the accretion disk. We propose that the magnetic field in EX Hydrae is strong enough (a few MG) to begin pulling material directly from the outer edge of the disk, thereby forming a large accretion curtain which would produce a very broad bulge dip. This would also result in magnetically controlled accretion streams originating from the outer edge of the disk. We also present a period analysis of the photometric data which shows numerous beat frequencies with strong power and also intermittent and wandering frequencies, an indication that physical conditions within EX Hya changed over the course of the observation. Iron spectral line ratios give a temperature of log T=6.5-6.9 K for all spin phases and a poorly constrained density of n_e=10^10-10^11 cm^-3 for the emitting plasma. This paper is the first in a series detailing our results from this multi-wavelength observational campaign.Comment: 27 pages, 7 figures, accepted for publication in Ap

    A gauge theoretical view of the charge concept in Einstein gravity

    Get PDF
    We will discuss some analogies between internal gauge theories and gravity in order to better understand the charge concept in gravity. A dimensional analysis of gauge theories in general and a strict definition of elementary, monopole, and topological charges are applied to electromagnetism and to teleparallelism, a gauge theoretical formulation of Einstein gravity. As a result we inevitably find that the gravitational coupling constant has dimension â„Ź/l2\hbar/l^2, the mass parameter of a particle dimension â„Ź/l\hbar/l, and the Schwarzschild mass parameter dimension l (where l means length). These dimensions confirm the meaning of mass as elementary and as monopole charge of the translation group, respectively. In detail, we find that the Schwarzschild mass parameter is a quasi-electric monopole charge of the time translation whereas the NUT parameter is a quasi-magnetic monopole charge of the time translation as well as a topological charge. The Kerr parameter and the electric and magnetic charges are interpreted similarly. We conclude that each elementary charge of a Casimir operator of the gauge group is the source of a (quasi-electric) monopole charge of the respective Killing vector.Comment: LaTeX2e, 16 pages, 1 figure; enhanced discussio

    The conservation of energy-momentum and the mass for the graviton

    Full text link
    In this work we give special attention to the bimetric theory of gravitation with massive gravitons proposed by Visser in 1998. In his theory, a prior background metric is necessary to take in account the massive term. Although in the great part of the astrophysical studies the Minkowski metric is the best choice to the background metric, it is not possible to consider this metric in cosmology. In order to keep the Minkowski metric as background in this case, we suggest an interpretation of the energy-momentum conservation in Visser's theory, which is in accordance with the equivalence principle and recovers naturally the special relativity in the absence of gravitational sources. Although we do not present a general proof of our hypothesis we show its validity in the simple case of a plane and dust-dominated universe, in which the `massive term' appears like an extra contribution for the energy density.Comment: 9 pages, accepted for publishing in GR

    Faster Family-wise Error Control for Neuroimaging with a Parametric Bootstrap

    Full text link
    In neuroimaging, hundreds to hundreds of thousands of tests are performed across a set of brain regions or all locations in an image. Recent studies have shown that the most common family-wise error (FWE) controlling procedures in imaging, which rely on classical mathematical inequalities or Gaussian random field theory, yield FWE rates that are far from the nominal level. Depending on the approach used, the FWER can be exceedingly small or grossly inflated. Given the widespread use of neuroimaging as a tool for understanding neurological and psychiatric disorders, it is imperative that reliable multiple testing procedures are available. To our knowledge, only permutation joint testing procedures have been shown to reliably control the FWER at the nominal level. However, these procedures are computationally intensive due to the increasingly available large sample sizes and dimensionality of the images, and analyses can take days to complete. Here, we develop a parametric bootstrap joint testing procedure. The parametric bootstrap procedure works directly with the test statistics, which leads to much faster estimation of adjusted \emph{p}-values than resampling-based procedures while reliably controlling the FWER in sample sizes available in many neuroimaging studies. We demonstrate that the procedure controls the FWER in finite samples using simulations, and present region- and voxel-wise analyses to test for sex differences in developmental trajectories of cerebral blood flow
    • …
    corecore