We will discuss some analogies between internal gauge theories and gravity in
order to better understand the charge concept in gravity. A dimensional
analysis of gauge theories in general and a strict definition of elementary,
monopole, and topological charges are applied to electromagnetism and to
teleparallelism, a gauge theoretical formulation of Einstein gravity.
As a result we inevitably find that the gravitational coupling constant has
dimension ℏ/l2, the mass parameter of a particle dimension ℏ/l,
and the Schwarzschild mass parameter dimension l (where l means length). These
dimensions confirm the meaning of mass as elementary and as monopole charge of
the translation group, respectively. In detail, we find that the Schwarzschild
mass parameter is a quasi-electric monopole charge of the time translation
whereas the NUT parameter is a quasi-magnetic monopole charge of the time
translation as well as a topological charge. The Kerr parameter and the
electric and magnetic charges are interpreted similarly. We conclude that each
elementary charge of a Casimir operator of the gauge group is the source of a
(quasi-electric) monopole charge of the respective Killing vector.Comment: LaTeX2e, 16 pages, 1 figure; enhanced discussio