50 research outputs found

    Complement Split Product C5a Mediates the Lipopolysaccharide‐Induced Mobilization of Cfu‐S and Haemopoietic Progenitor Cells, But Not the Mobilization Induced By Proteolytic Enzymes

    Get PDF
    Abstract. Intravenous (i.v.) injection of mice with lipopolysaccharide (LPS), and the proteolytic enzymes trypsin and proteinase, mobilizes pluripotent haemopoietic stem cells (CFU‐s) as well as granulocyte‐macrophage progenitor cells (GM‐CFU) and the early progenitors of the erythroid lineage (E‐BFU) from the haemopoietic tissues into the peripheral blood. We investigated the involvement of the complement (C) system in this process. It appeared that the early mobilization induced by LPS and other activators of the alternative complement pathway, such as Listeria monocytogenes (Lm) and zymosan, but not that induced by the proteolytic enzymes, was absent in C5‐deficient mice. the mobilization by C activators in these mice could be restored by injection of C5‐sufficient serum, suggesting a critical role for C5. The manner in which C5 was involved in the C activation‐mediated stem cell mobilization was studied using a serum transfer system. C5‐sufficient serum, activated in vitro by incubation with Lm and subsequently liberated from the bacteria, caused mobilization in both C5‐sufficient and C5‐deficient mice. C5‐deficient serum was not able to do so. the resistance of the mobilizing principle to heat treatment (56°C, 30 min) strongly suggests that it is identical with the C5 split product C5a, or an in vivo derivative of C5a. This conclusion was reinforced by the observation that a single injection of purified rat C5a into C5‐deficient mice also induced mobilization of CFU‐s. Copyrigh

    Experimental Studies of Solar and Solar-Dehumidification Lumber Drying

    No full text

    A financial analysis of furniture parts from short bolts

    No full text

    Supplementary material 5 from: Bragança PHN, Amorim PF, Costa WJEM (2018) Pantanodontidae (Teleostei, Cyprinodontiformes), the sister group to all other cyprinodontoid killifishes as inferred by molecular data. Zoosystematics and Evolution 94(1): 137-145. https://doi.org/10.3897/zse.94.22173

    No full text
    Pantanodon, containing two African extant species and four European fossil species, for a long time had an uncertain position among the Cyprinodontiformes due to its peculiar morphology. In the last decades, Pantanodon has been considered closely related to African lamp-eyes of the Procatopodinae clade, which is contained in the Poeciliidae, a teleost fish family with a broad geographical distribution in Africa and the Americas. However, recent molecular studies have challenged the monophyly of the Poeciliidae, but the position of Pantanodon remained uncertain. We analysed one mitochondrial (COI) and five nuclear loci (GLYT1, MYH6, SH3PX3, RAG1, ENC1), a total of 5,083 bp, for 27 cyprinodontiform taxa and 6 outgroups, obtaining a well-supported phylogeny, in which the monophyly of Poeciliidae, as supported by morphological data is refuted. Pantanodon stuhlmanni, the type species of the genus, is recovered as the most basal cyprinodontoid lineage and other African taxa formerly placed in Poeciliidae are highly supported as more closely related to European non-poeciliid cyprinodontoid genera than to other taxa. Since the present tree topology is not compatible with the present classification of the Cyprinodontoidei, a new classification using available family group names is provided: Pantanodontidae is used for Pantanodon; Procatopodidae, for the African lamp-eye clade; and Fluviphylacidae, for the South American genus Fluviphylax. Poeciliidae is restricted to the American livebearers, hence restoring the classification generally used prior to 1981
    corecore