531 research outputs found
Molecular characterization of an anion pump. The ArsB protein is the membrane anchor for the ArsA protein
R-factor mediated bacterial resistance to arsenical salts occurs by active extrusion of the toxic oxyanions from cells of gram negative bacteria. The ars operon of the conjugative plasmid R773 encodes an anion pump. The pump has two polypeptide components. The catalytic subunit, the ArsA protein, is an oxyanion-stimulated ATPase. The membrane component, the ArsB protein, has been localized in the inner membrane of Escherichia coli. The ArsA and ArsB proteins have been postulated to form a membrane complex which functions as an anion-translocating ATPase. In this study evidence is presented showing that expression of the arsB gene is required to anchor the ArsA protein to the inner membrane. Binding studies with purified ArsA to membranes with and without the arsB gene product confirm this requirement. Membranes of uncA mutants containing both the ArsA and ArsB proteins exhibit arsenite(antimonite)-stimulated ATPase activity. These results support the model in which the ArsA protein is the catalytic energy transducing component of the anion pump, whereas the integral membrane ArsB protein serves as both the anion channel and membrane binding site for the ArsA protein
Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase
The ars operon of the conjugative R-factor R773 encodes an oxyanion pump that catalyzes extrusion of arsenicals from cells of Escherichia coli. The oxyanion translocation ATPase is composed of two polypeptides, the catalytic ArsA protein and the intrinsic membrane protein, ArsB. The topology of regions of the ArsB protein in the inner membrane was determined using a variety of gene fusions. Random gene fusions with lacZ and phoA were generated using transposon mutagenesis. A series of gene fusions with blaM were constructed in vitro using a beta-lactamase fusion vector. To localize individual segments of the ArsB protein, a ternary fusion method was developed, where portions of the arsB gene were inserted in-frame between the coding regions for two heterologous proteins, in this case a portion of a newly identified arsD gene and the blaM sequence encoding the mature beta-lactamase. The location of a periplasmic loop was determined from V8 protease digestion of an ArsA-ArsB chimera. From analysis of data from 26 fusions, a topological model of the ArsB protein with 12 membrane-spanning regions is proposed
Pathway of human AS3MT arsenic methylation
A synthetic gene encoding human As(III) S-adenosylmethionine (SAM) methyltransferase (hAS3MT) was expressed, and the purified enzyme was characterized. The synthetic enzyme is considerably more active than a cDNA-expressed enzyme using endogenous reductants thioredoxin (Trx), thioredoxin reductase (TR), NADPH, and reduced glutathione (GSH). Each of the seven cysteines (the four conserved residues, Cys32, Cys61, Cys156, and Cys206, and nonconserved, Cys72, Cys85, and Cys250) was individually changed to serine. The nonconserved cysteine derivates were still active. None of the individual C32S, C61S, C156S, and C206S derivates were able to methylate As(III). However, the C32S and C61S enzymes retained the ability to methylate MAs(III). These observations suggest that Cys156 and Cys206 play a different role in catalysis than that of Cys32 and Cys61. A homology model built on the structure of a thermophilic orthologue indicates that Cys156 and Cys206 form the As(III) binding site, whereas Cys32 and Cys61 form a disulfide bond. Two observations shed light on the pathway of methylation. First, binding assays using the fluorescence of a single-tryptophan derivative indicate that As(GS)3 binds to the enzyme much faster than inorganic As(III). Second, the major product of the first round of methylation is MAs(III), not MAs(V), and remains enzyme-bound until it is methylated a second time. We propose a new pathway for hAS3MT catalysis that reconciles the hypothesis of Challenger ((1947) Sci. Prog., 35, 396-416) with the pathway proposed by Hayakawa et al. ((2005) Arch. Toxicol., 79, 183-191). The products are the more toxic and more carcinogenic trivalent methylarsenicals, but arsenic undergoes oxidation and reduction as enzyme-bound intermediates
Methylarsonous Acid Transport by Aquaglyceroporins
Many mammals methylate trivalent inorganic arsenic in liver to species that are released into the bloodstream and excreted in urine and feces. This study addresses how methylated arsenicals pass through cell membranes. We have previously shown that aquaglyceroporin channels, including Escherichia coli GlpF, Saccharomyces cerevisiae Fps1p, AQP7, and AQP9 from rat and human, conduct trivalent inorganic arsenic [As(III)] as arsenic trioxide, the protonated form of arsenite. One of the initial products of As(III) methylation is methylarsonous acid [MAs(III)], which is considerably more toxic than inorganic As(III). In this study, we investigated the ability of GlpF, Fps1p, and AQP9 to facilitate movement of MAs(III) and found that rat aquaglyceroporin conducted MAs(III) at a higher rate than the yeast homologue. In addition, rat AQP9 facilitates MAs(III) at a higher rate than As(III). These results demonstrate that aquaglyceroporins differ both in selectivity for and in transport rates of trivalent arsenicals. In this study, the requirement of AQP9 residues Phe-64 and Arg-219 for MAs(III) movement was examined. A hydrophobic residue at position 64 is not required for MAs(III) transport, whereas an arginine at residue 219 may be required. This is similar to that found for As(III), suggesting that As(III) and MAs(III) use the same translocation pathway in AQP9. Identification of MAs(III) as an AQP9 substrate is an important step in understanding physiologic responses to arsenic in mammals, including humans
Pathways of arsenic uptake and efflux
Arsenic is a non-essential, environmentally ubiquitous toxic metalloid. In response to this pervasive environmental challenge, organisms evolved mechanisms to confer resistance to arsenicals. Inorganic pentavalent arsenate is taken into most cells adventitiously by phosphate uptake systems. Similarly, inorganic trivalent arsenite is taken into most cells adventitiously, primarily via aquaglyceroporins or sugar permeases. The most common strategy for tolerance to both inorganic and organic arsenicals is by efflux that extrude them from the cytosol. These efflux transporters span across kingdoms and belong to various families such as aquaglyceroporins, major facilitator superfamily (MFS) transporters, ATP-binding cassette (ABC) transporters and potentially novel, yet to be discovered families. This review will outline the properties and substrates of known arsenic transport systems, the current knowledge gaps in the field, and aims to provide insight into the importance of arsenic transport in the context of the global arsenic biogeocycle and human health
Aquaglyceroporins: ancient channels for metalloids
The identification of aquaglyceroporins as uptake channels for arsenic and antimony shows how these toxic elements can enter the food chain, and suggests that food plants could be genetically modified to exclude arsenic while still accumulating boron and silicon
- …