70 research outputs found

    Predicting responses to psychedelics: a prospective study

    Get PDF
    Responses to psychedelics are notoriously difficult to predict, yet significant work is currently underway to assess their therapeutic potential and the level of interest in psychedelics among the general public appears to be increasing. We aimed to collect prospective data in order to improve our ability to predict acute- and longer-term responses to psychedelics. Individuals who planned to take a psychedelic through their own initiative participated in an online survey (www.psychedelicsurvey.com). Traits and variables relating to set, setting and the acute psychedelic experience were measured at five different time points before and after the experience. Principle component and regression methods were used to analyse the data. Sample sizes for the five time points included N= 654, N= 535, N= 379, N= 315, and N= 212 respectively. Psychological well-being was increased two weeks after a psychedelic experience and remained at this level after four weeks. This increase was larger for individuals who scored higher for a ‘mystical-type experience’, and smaller for those who scored higher for ‘challenging experience’. Having ‘clear intentions’ for the experience was conducive to mystical-type experiences. Having a positive ‘set’, as well as having the experience with intentions related to ‘recreation’, were both found to decrease the likelihood of having a challenging experience. The trait ‘absorption’ and higher drug doses promoted both mystical-type and challenging experiences. When comparing different types of variables, traits variables seemed to explain most variance in the change in well-being after a psychedelic experience. These results confirm the importance of extra-pharmacological factors in determining responses to a psychedelic. We view this study as an early step towards the development of empirical guidelines that can evolve and improve iteratively with the ultimate purpose of guiding crucial clinical decisions about whether, when, where and how to dose with a psychedelic, thus helping to reduce risks while maximising potential benefits in an evidence-based manner

    Predicting Responses to Psychedelics: A Prospective Study

    Get PDF
    Responses to psychedelics are notoriously difficult to predict, yet significant work is currently underway to assess their therapeutic potential and the level of interest in psychedelics among the general public appears to be increasing. We aimed to collect prospective data in order to improve our ability to predict acute- and longer-term responses to psychedelics. Individuals who planned to take a psychedelic through their own initiative participated in an online survey (www.psychedelicsurvey.com). Traits and variables relating to set, setting and the acute psychedelic experience were measured at five different time points before and after the experience. Principle component and regression methods were used to analyse the data. Sample sizes for the five time points were N = 654, N = 535, N = 379, N = 315, and N = 212 respectively. Psychological well-being was increased 2 weeks after a psychedelic experience and remained at this level after 4 weeks. Higher ratings of a “mystical-type experience” had a positive effect on the change in well-being after a psychedelic experience, whereas the other acute psychedelic experience measures, i.e., “challenging experience” and “visual effects”, did not influence the change in well-being after the psychedelic experience. Having “clear intentions” for the experience was conducive to mystical-type experiences. Having a positive “set” as well as having the experience with intentions related to “recreation” were both found to decrease the likelihood of having a challenging experience. The baseline trait “absorption” and higher drug doses promoted all aspects of the acute experience, i.e., mystical-type and challenging experiences, as well as visual effects. When comparing the relative contribution of different types of variables in explaining the variance in the change in well-being, it seemed that baseline trait variables had the strongest effect on the change in well-being after a psychedelic experience. These results confirm the importance of extra-pharmacological factors in determining responses to a psychedelic. We view this study as an early step towards the development of empirical guidelines that can evolve and improve iteratively with the ultimate purpose of guiding crucial clinical decisions about whether, when, where and how to dose with a psychedelic, thus helping to mitigate risks while maximizing potential benefits in an evidence-based manner

    Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms

    Get PDF
    Psilocybin with psychological support is showing promise as a treatment model in psychiatry but its therapeutic mechanisms are poorly understood. Here, cerebral blood flow (CBF) and blood oxygen-level dependent (BOLD) resting-state functional connectivity (RSFC) were measured with functional magnetic resonance imaging (fMRI) before and after treatment with psilocybin (serotonin agonist) for treatment-resistant depression (TRD). Quality pre and post treatment fMRI data were collected from 16 of 19 patients. Decreased depressive symptoms were observed in all 19 patients at 1-week post-treatment and 47% met criteria for response at 5 weeks. Whole-brain analyses revealed post-treatment decreases in CBF in the temporal cortex, including the amygdala. Decreased amygdala CBF correlated with reduced depressive symptoms. Focusing on a priori selected circuitry for RSFC analyses, increased RSFC was observed within the default-mode network (DMN) post-treatment. Increased ventromedial prefrontal cortex-bilateral inferior lateral parietal cortex RSFC was predictive of treatment response at 5-weeks, as was decreased parahippocampal-prefrontal cortex RSFC. These data fill an important knowledge gap regarding the post-treatment brain effects of psilocybin, and are the first in depressed patients. The post-treatment brain changes are different to previously observed acute effects of psilocybin and other ‘psychedelics’ yet were related to clinical outcomes. A ‘reset’ therapeutic mechanism is proposed

    Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution.

    Get PDF
    Lysergic acid diethylamide (LSD) is a non-selective serotonin-receptor agonist that was first synthesized in 1938 and identified as (potently) psychoactive in 1943. Psychedelics have been used by indigenous cultures for millennia [1]; however, because of LSD's unique potency and the timing of its discovery (coinciding with a period of major discovery in psychopharmacology), it is generally regarded as the quintessential contemporary psychedelic [2]. LSD has profound modulatory effects on consciousness and was used extensively in psychological research and psychiatric practice in the 1950s and 1960s [3]. In spite of this, however, there have been no modern human imaging studies of its acute effects on the brain. Here we studied the effects of LSD on intrinsic functional connectivity within the human brain using fMRI. High-level association cortices (partially overlapping with the default-mode, salience, and frontoparietal attention networks) and the thalamus showed increased global connectivity under the drug. The cortical areas showing increased global connectivity overlapped significantly with a map of serotonin 2A (5-HT2A) receptor densities (the key site of action of psychedelic drugs [4]). LSD also increased global integration by inflating the level of communication between normally distinct brain networks. The increase in global connectivity observed under LSD correlated with subjective reports of "ego dissolution." The present results provide the first evidence that LSD selectively expands global connectivity in the brain, compromising the brain's modular and "rich-club" organization and, simultaneously, the perceptual boundaries between the self and the environment.This research received financial support from the Safra Foundation (who fund DJN as the Edmond J. Safra Professor of Neuropsychopharmacology) and the Beckley Foundation (it was conducted as part of the Beckley-Imperial research programme). ET is supported by a postdoctoral fellowship of the AXA Research Fund. RCH is supported by an MRC clinical development scheme grant. SDM is supported by a Royal Society of New Zealand Rutherford Discovery Fellowship. KM is supported by a Wellcome Trust Fellowship (WT090199). The researchers would like to thank supporters of the Walacea.com crowd-funding campaign for helping to secure the funds required to complete the study. This report presents independent research carried out at the NIHR/Wellcome Trust Imperial Clinical Research Facility. Authors declare no conflict of interest.This is the author accepted manuscript. The final version is available from Cell Press via http://dx.doi.org/10.1016/j.cub.2016.02.01
    • 

    corecore