2 research outputs found
Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality
This is the peer reviewed version of the following article:Rogríguez, Óscar, Eim, Valeria S., Roselló Matas, Carmen, Femenía, Antonio, Carcel Carrión, Juan Andrés, Simal, Susana. (2018). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality.Journal of the Science of Food and Agriculture, 98, 5, 1660-1673. DOI: 10.1002/jsfa.8673, which has been published in final form at http://doi.org/10.1002/jsfa.8673. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. Despite the benefits of this operation, the quality of heat sensitive products is diminished when high temperatures are used. The use of low drying temperatures reduces the heat damage but, because of a longer drying time, oxidation reactions occur and a reduction of the quality is also observed. Thus, drying is a method that lends itself to being intensified. For this reason, alternative techniques are being studied. Power ultrasound is considered as an emerging and promising technology in the food industry. The potential of this technology relies on its ability to accelerate the mass transfer processes in solid-liquid and solid-gas systems. Intensification of the drying process with power ultrasound can be achieved by modifying the product behavior during drying, using pre-treatments such as soaking in a liquid medium assisted acoustically or, during the drying process itself, by applying power ultrasound in the gaseous medium. This review summarises the effects of the application of the power ultrasound on the quality of different dried products, such as fruits and vegetables, when the acoustic energy is intended to intensify the drying process, either when the application is performed before pretreatment or during the drying process. (c) 2017 Society of Chemical IndustryWe thank Conselleria d'Agricultura, Medi Ambient i Territori and Fons de Garantia Agraria i Pesquera de les Illes Balears (FOGAIBA) and the Spanish Government (MEIC) for financial support (RTA2015-00060-C04, AIA01/15).Rogríguez, Ó.; Eim, VS.; Roselló Matas, C.; Femenía, A.; Carcel Carrión, JA.; Simal, S. (2018). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture. 98(5):1660-1673. https://doi.org/10.1002/jsfa.8673S16601673985Fernandes, F. A. N., Rodrigues, S., Cárcel, J. A., & García-Pérez, J. V. (2015). Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 8(7), 1503-1511. doi:10.1007/s11947-015-1519-7Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2014). Drying Assisted by Power Ultrasound. Modern Drying Technology, 237-278. doi:10.1002/9783527631704.ch08Ozuna, C., Gómez Álvarez-Arenas, T., Riera, E., Cárcel, J. A., & Garcia-Perez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, 21(3), 1235-1243. doi:10.1016/j.ultsonch.2013.12.015Venkatesh, M. S., & Raghavan, G. S. V. (2004). An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials. Biosystems Engineering, 88(1), 1-18. doi:10.1016/j.biosystemseng.2004.01.007Feng, H., Yin, Y., & Tang, J. (2012). Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Engineering Reviews, 4(2), 89-106. doi:10.1007/s12393-012-9048-xOey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends in Food Science & Technology, 19(6), 320-328. doi:10.1016/j.tifs.2008.04.001Chen, D., Xi, H., Guo, X., Qin, Z., Pang, X., Hu, X., … Wu, J. (2013). Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innovative Food Science & Emerging Technologies, 19, 85-94. doi:10.1016/j.ifset.2013.03.003Ade-Omowaye, B. I. O., Angersbach, A., Taiwo, K. A., & Knorr, D. (2001). Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends in Food Science & Technology, 12(8), 285-295. doi:10.1016/s0924-2244(01)00095-4Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813-835. doi:10.1016/j.ultsonch.2010.11.023Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82(2), 261-267. doi:10.1016/j.jfoodeng.2007.02.032Cárcel, J. A., García-Pérez, J. V., Benedito, J., & Mulet, A. (2012). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110(2), 200-207. doi:10.1016/j.jfoodeng.2011.05.038Fernandes, F. A. N., Linhares, F. E., & Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6), 1049-1054. doi:10.1016/j.ultsonch.2008.03.009García-Pérez, J. V., Cárcel, J. A., Benedito, J., & Mulet, A. (2007). Power Ultrasound Mass Transfer Enhancement in Food Drying. Food and Bioproducts Processing, 85(3), 247-254. doi:10.1205/fbp07010Mason, T. J., Riera, E., Vercet, A., & Lopez-Buesa, P. (2005). Application of Ultrasound. Emerging Technologies for Food Processing, 323-351. doi:10.1016/b978-012676757-5/50015-3Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323-331. doi:10.1016/j.tifs.2010.04.003Pingret, D., Fabiano-Tixier, A.-S., & Chemat, F. (2013). Degradation during application of ultrasound in food processing: A review. Food Control, 31(2), 593-606. doi:10.1016/j.foodcont.2012.11.039Kek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91(4), 495-506. doi:10.1016/j.fbp.2013.05.003Ricce, C., Rojas, M. L., Miano, A. C., Siche, R., & Augusto, P. E. D. (2016). Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Research International, 89, 701-708. doi:10.1016/j.foodres.2016.09.030Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234(6), 1071-1079. doi:10.1007/s00217-012-1726-7Romero J., C. A., & Yépez V., B. D. (2015). Ultrasound as pretreatment to convective drying of Andean blackberry (Rubus glaucus Benth). Ultrasonics Sonochemistry, 22, 205-210. doi:10.1016/j.ultsonch.2014.06.011Santacatalina, J. V., Contreras, M., Simal, S., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 100-109. doi:10.1016/j.ultsonch.2015.06.027Rodríguez, Ó., Llabrés, P. J., Simal, S., Femenia, A., & Rosselló, C. (2014). Intensification of Predrying Treatments by Means of Ultrasonic Assistance: Effects on Water Mobility, PPO Activity, Microstructure, and Drying Kinetics of Apple. Food and Bioprocess Technology, 8(3), 503-515. doi:10.1007/s11947-014-1424-5Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81(1), 88-97. doi:10.1016/j.jfoodeng.2006.10.009Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT - Food Science and Technology, 41(4), 604-610. doi:10.1016/j.lwt.2007.05.007Beck, S. M., Sabarez, H., Gaukel, V., & Knoerzer, K. (2014). Enhancement of convective drying by application of airborne ultrasound – A response surface approach. Ultrasonics Sonochemistry, 21(6), 2144-2150. doi:10.1016/j.ultsonch.2014.02.013Yao, Y. (2016). Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration. Ultrasonics Sonochemistry, 31, 512-531. doi:10.1016/j.ultsonch.2016.01.039Oladejo, A. O., & Ma, H. (2016). Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology. Journal of the Science of Food and Agriculture, 96(11), 3688-3693. doi:10.1002/jsfa.7552Fernandes, F. A. N., & Rodrigues, S. (2017). Osmotic Dehydration and Blanching. Ultrasound in Food Processing, 311-328. doi:10.1002/9781118964156.ch11Azoubel, P. M., Baima, M. do A. M., Amorim, M. da R., & Oliveira, S. S. B. (2010). Effect of ultrasound on banana cv Pacovan drying kinetics. Journal of Food Engineering, 97(2), 194-198. doi:10.1016/j.jfoodeng.2009.10.009Rodríguez, Ó., Gomes, W., Rodrigues, S., & Fernandes, F. A. N. (2017). Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrasonics Sonochemistry, 35, 92-102. doi:10.1016/j.ultsonch.2016.09.006Fijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., & Witrowa-Rajchert, D. (2015). Ultrasound as a Pretreatment Method to Improve Drying Kinetics and Sensory Properties of Dried Apple. Journal of Food Process Engineering, 39(3), 256-265. doi:10.1111/jfpe.12217Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433. doi:10.1016/j.jfoodeng.2012.06.013Stojanovic, J., & Silva, J. L. (2007). Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries. Food Chemistry, 101(3), 898-906. doi:10.1016/j.foodchem.2006.02.044Siucińska, K., Mieszczakowska-Frąc, M., Połubok, A., & Konopacka, D. (2016). Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries. Journal of Food Science, 81(7), C1654-C1661. doi:10.1111/1750-3841.13368Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2010). Dehydration of Malay Apple (Syzygium malaccense L.) Using Ultrasound as Pre-treatment. Food and Bioprocess Technology, 4(4), 610-615. doi:10.1007/s11947-010-0351-3Çakmak, R. Ş., Tekeoğlu, O., Bozkır, H., Ergün, A. R., & Baysal, T. (2016). Effects of electrical and sonication pretreatments on the drying rate and quality of mushrooms. LWT - Food Science and Technology, 69, 197-202. doi:10.1016/j.lwt.2016.01.032Azoubel, P. M., da Rocha Amorim, M., Oliveira, S. S. B., Maciel, M. I. S., & Rodrigues, J. D. (2015). Improvement of Water Transport and Carotenoid Retention During Drying of Papaya by Applying Ultrasonic Osmotic Pretreatment. Food Engineering Reviews, 7(2), 185-192. doi:10.1007/s12393-015-9120-4Mothibe, K. J., Zhang, M., Mujumdar, A. S., Wang, Y. C., & Cheng, X. (2014). Effects of Ultrasound and Microwave Pretreatments of Apple Before Spouted Bed Drying on Rate of Dehydration and Physical Properties. Drying Technology, 32(15), 1848-1856. doi:10.1080/07373937.2014.952381Rawson, A., Tiwari, B. K., Tuohy, M. G., O’Donnell, C. P., & Brunton, N. (2011). Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrasonics Sonochemistry, 18(5), 1172-1179. doi:10.1016/j.ultsonch.2011.03.009Tao, Y., Wang, P., Wang, Y., Kadam, S. U., Han, Y., Wang, J., & Zhou, J. (2016). Power ultrasound as a pretreatment to convective drying of mulberry ( Morus alba L.) leaves: Impact on drying kinetics and selected quality properties. Ultrasonics Sonochemistry, 31, 310-318. doi:10.1016/j.ultsonch.2016.01.012Sledz, M., Wiktor, A., Rybak, K., Nowacka, M., & Witrowa-Rajchert, D. (2016). The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaves. Applied Acoustics, 103, 148-156. doi:10.1016/j.apacoust.2015.05.006Dias da Silva, G., Barros, Z. M. P., de Medeiros, R. A. B., de Carvalho, C. B. O., Rupert Brandão, S. C., & Azoubel, P. M. (2016). Pretreatments for melon drying implementing ultrasound and vacuum. LWT, 74, 114-119. doi:10.1016/j.lwt.2016.07.039Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472-479. doi:10.1016/j.jfoodeng.2005.10.018Garcia-Noguera, J., Oliveira, F. I. P., Gallão, M. I., Weller, C. L., Rodrigues, S., & Fernandes, F. A. N. (2010). Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 28(2), 294-303. doi:10.1080/07373930903530402Kowalski, S. J., Szadzińska, J., & Pawłowski, A. (2015). Ultrasonic-Assisted Osmotic Dehydration of Carrot Followed by Convective Drying with Continuous and Intermittent Heating. Drying Technology, 33(13), 1570-1580. doi:10.1080/07373937.2015.1012265Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186-190. doi:10.1016/j.jfoodeng.2008.06.021Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2017). Ultrasonically Assisted Drying. Ultrasound in Food Processing, 371-391. doi:10.1002/9781118964156.ch14Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132-139. doi:10.1016/j.jfoodeng.2013.12.021Kowalski, S. J., & Pawłowski, A. (2015). Intensification of apple drying due to ultrasound enhancement. Journal of Food Engineering, 156, 1-9. doi:10.1016/j.jfoodeng.2015.01.023Sabarez, H. T., Gallego-Juarez, J. A., & Riera, E. (2012). Ultrasonic-Assisted Convective Drying of Apple Slices. Drying Technology, 30(9), 989-997. doi:10.1080/07373937.2012.677083Cárcel, J. A., Garcia-Perez, J. V., Riera, E., & Mulet, A. (2011). Improvement of Convective Drying of Carrot by Applying Power Ultrasound—Influence of Mass Load Density. Drying Technology, 29(2), 174-182. doi:10.1080/07373937.2010.483032Gallego-Juarez, J. A. (2010). High-power ultrasonic processing: Recent developments and prospective advances. Physics Procedia, 3(1), 35-47. doi:10.1016/j.phpro.2010.01.006Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Drying Technology, 25(11), 1893-1901. doi:10.1080/07373930701677371Frias, J., Peñas, E., Ullate, M., & Vidal-Valverde, C. (2010). Influence of Drying by Convective Air Dryer or Power Ultrasound on the Vitamin C and β-Carotene Content of Carrots. Journal of Agricultural and Food Chemistry, 58(19), 10539-10544. doi:10.1021/jf102797yKowalski, S. J., Pawłowski, A., Szadzińska, J., Łechtańska, J., & Stasiak, M. (2016). High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science & Emerging Technologies, 34, 225-233. doi:10.1016/j.ifset.2016.02.006Schössler, K., Thomas, T., & Knorr, D. (2012). Modification of cell structure and mass transfer in potato tissue by contact ultrasound. Food Research International, 49(1), 425-431. doi:10.1016/j.foodres.2012.07.027Schössler, K., Jäger, H., & Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108(1), 103-110. doi:10.1016/j.jfoodeng.2011.07.018Schössler, K., Jäger, H., & Knorr, D. (2012). Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innovative Food Science & Emerging Technologies, 16, 113-120. doi:10.1016/j.ifset.2012.05.010García-Pérez JV Carcel JA Mulet A Riera E Gallego-Juarez JA Ultrasonic drying for food preservation Power Ultrasonics Woodhead Publishing Oxford 875 910 2015Garcia-Perez, J. V., Carcel, J. A., Riera, E., Rosselló, C., & Mulet, A. (2012). Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technology, 30(11-12), 1199-1208. doi:10.1080/07373937.2012.675533Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001Santacatalina, J. V., Rodríguez, O., Simal, S., Cárcel, J. A., Mulet, A., & García-Pérez, J. V. (2014). Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 138, 35-44. doi:10.1016/j.jfoodeng.2014.04.003Ozuna, C., Cárcel, J. A., García-Pérez, J. V., & Mulet, A. (2011). Improvement of water transport mechanisms during potato drying by applying ultrasound. Journal of the Science of Food and Agriculture, 91(14), 2511-2517. doi:10.1002/jsfa.4344Fernandes, F. A. N., Rodrigues, S., García-Pérez, J. V., & Cárcel, J. A. (2015). Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 34(8), 986-996. doi:10.1080/07373937.2015.1090445Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2011). Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 5(6), 2256-2265. doi:10.1007/s11947-011-0645-0Puig, A., Perez-Munuera, I., Carcel, J. A., Hernando, I., & Garcia-Perez, J. V. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 90(4), 624-632. doi:10.1016/j.fbp.2012.07.001Cruz, L., Clemente, G., Mulet, A., Ahmad-Qasem, M. H., Barrajón-Catalán, E., & García-Pérez, J. V. (2016). Air-borne ultrasonic application in the drying of grape skin: Kinetic and quality considerations. Journal of Food Engineering, 168, 251-258. doi:10.1016/j.jfoodeng.2015.08.001Do Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., de Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. doi:10.1016/j.jfoodeng.2015.09.015Szadzińska, J., Kowalski, S. J., & Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103, 1065-1074. doi:10.1016/j.ijheatmasstransfer.2016.08.001Szadzińska, J., Łechtańska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 531-539. doi:10.1016/j.ultsonch.2016.06.030Fonteles, T. V., Leite, A. K. F., Silva, A. R. A., Carneiro, A. P. G., Miguel, E. de C., Cavada, B. S., … Rodrigues, S. (2016). Ultrasound processing to enhance drying of cashew apple bagasse puree: Influence on antioxidant properties and in vitro bioaccessibility of bioactive compounds. Ultrasonics Sonochemistry, 31, 237-249. doi:10.1016/j.ultsonch.2016.01.003Boukouvalas, C. J., Krokida, M. K., Maroulis, Z. B., & Marinos-Kouris, D. (2006). Density and Porosity: Literature Data Compilation for Foodstuffs. International Journal of Food Properties, 9(4), 715-746. doi:10.1080/10942910600575690Ozuna, C., Cárcel, J. A., Walde, P. M., & Garcia-Perez, J. V. (2014). Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science & Emerging Technologies, 23, 146-155. doi:10.1016/j.ifset.2014.03.008Chen, Z.-G., Guo, X.-Y., & Wu, T. (2016). A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics Sonochemistry, 30, 28-34. doi:10.1016/j.ultsonch.2015.11.026Santacatalina, J. V., Soriano, J. R., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing, 100, 282-291. doi:10.1016/j.fbp.2016.07.010Musielak, G., Mierzwa, D., & Kroehnke, J. (2016). Food drying enhancement by ultrasound – A review. Trends in Food Science & Technology, 56, 126-141. doi:10.1016/j.tifs.2016.08.003Kowalski, S. J., & Szadzińska, J. (2014). Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chemical Engineering and Processing: Process Intensification, 82, 65-70. doi:10.1016/j.cep.2014.05.006Pérez-Jiménez, J., Díaz-Rubio, M. E., & Saura-Calixto, F. (2014). Non-Extractable Polyphenols in Plant Foods. Polyphenols in Plants, 203-218. doi:10.1016/b978-0-12-397934-6.00010-3Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877. doi:10.1038/nprot.2007.102Gamboa-Santos, J., Soria, A. C., Villamiel, M., & Montilla, A.
Acoustically assisted supercritical CO2 extraction of cocoa butter: Effects on kinetics and quality
[EN] The effect of high power ultrasound (US) application and pressure on the supercritical fluid extraction (SFE) kinetics of cocoa butter and on characteristics of the extracted cocoa butter (fatty acids composition, transition temperatures, polyphenol content and antioxidant activity) has been evaluated. Extraction experiments were carried out at 40 degrees C and at two pressure levels of 400 bar and 550 bar, without and with US application of 50 +/- 5 W, the extraction yield being significantly improved as the pressure increased and the ultrasound was applied. A Weibull model allowed the accurate simulation of the extraction curves, considering a constant shape factor alpha which was affected only by the US application, whilst the rate constant beta was affected by both pressure and US application. In general, for all cocoa butter samples, the transition temperatures observed corresponded to the polymorph alpha, T-c = 9.9 +/- 0.3 degrees C and T-m = 20.2 +/- 0.4 degrees C. With regard to the fatty acid composition, the stearic (37.8 +/- 0.8%), oleic (33.7 +/- 0.2%), and palmitic (26.0 +/- 0.6%) were the major acids, and none were found to be influenced by either pressure or ultrasound application. Similarly, the total polyphenol content and antioxidant activity were not affected by extraction conditions. The microstructure of cocoa beans after processing was affected by pressure and also by ultrasound application which promoted a breaking of the cell arrangement, facilitating the butter extraction. (C) 2014 Elsevier B.V. All rights reserved.The authors would like to acknowledge the Spanish Government (MICINN), and European Regional Development Fund (FEDER), the European Social Fund (FSE) and the Govern de les Illes Balears for their financial support (DPI2009-14549-C04-02, DPI2012-37466-C03-02, AGL 2012-34627, Project 57/2011).Rodríguez, Ó.; Ortuño Cases, C.; Simal Florindo, S.; Benedito Fort, JJ.; Femenia, A.; Roselló Matas, C. (2014). Acoustically assisted supercritical CO2 extraction of cocoa butter: Effects on kinetics and quality. Journal of Supercritical Fluids. 94:30-37. https://doi.org/10.1016/j.supflu.2014.06.017S30379