919 research outputs found

    Nonequilibrium Electron Interactions in Metal Films

    Full text link
    Ultrafast relaxation dynamics of an athermal electron distribution is investigated in silver films using a femtosecond pump-probe technique with 18 fs pulses in off-resonant conditions. The results yield evidence for an increase with time of the electron-gas energy loss rate to the lattice and of the free electron damping during the early stages of the electron-gas thermalization. These effects are attributed to transient alterations of the electron average scattering processes due to the athermal nature of the electron gas, in agreement with numerical simulations

    A HREEL investigation of adsorption and dissociation of NO on a Rh(110) surface

    Get PDF
    The adsorption and dissociation of NO on a Rh(110) surface in the temperature range from 100 to 300 K has been studied by means of high-resolution electron energy loss (HREEL) spectroscopy. At 100 K only one adsorption state of NO, assigned to bridge-bonded NO species, is observed at the whole NO coverage range. The N-O stretching frequency of this species increases from 1560 to 1710 cm-1 with increasing NO coverage. NO decomposition, which occurs readily at temperatures above 170 K has been studied for NO coverages less than 0.3 of the saturated NO coverage at 100 K. The HREELS data have shown that the fraction of NO molecules which undergo dissociation increases with increasing temperature and with decreasing initial NO coverage. For the highest NO coverages considered (0.3 of saturation at 100 K) all NO molecules decompose at 240 K. A variety of loss features are observed in the HREEL spectra after decomposition of different amounts of NO. These HREEL data are explained on the basis of comparison with the HREEL spectra measured for oxygen, nitrogen and mixed oxygen and nitrogen layers on Rh(110). It has been established that the variety of loss features observed after dissociation of NO is due to different oxygen states on the surface. The observed effect of the dissociation products on the N-O stretching frequencies have heen discussed considering the factors that can account for the blue-shifts observed in the presence of electronegative surface modifiers

    Low-energy interband absorption in bcc Fe and hcp Co

    Get PDF
    We have examined the electronic structure of bcc Fe and single-crystal hcp Co by using optical absorptivity and thermoreflectance techniques for 0.2≤hν≤5 eV. The optical conductivities σ were calculated by Kramers-Kronig analyses. A prominent structure was observed in σ for Fe at 2.37 eV and a shoulder was observed near 0.8 eV; the latter structure was the dominant feature in the thermoreflectance spectrum. These were discussed in terms of minority-spin band interband absorption and spin-flip interband transitions. The anisotropic optical conductivities of hcp Co were discussed in terms of recent energy-band calculations

    Thermoreflectance investigation of the antiferromagnetic and paramagnetic phases of Cr

    Get PDF
    Thermoreflectance measurements have been performed on Cr single crystals at several temperatures above and below the Néel temperature. We observe dramatic changes induced by the magnetic phase transition. In contrast, static optical data fail to show appreciable differences in the (0.5-5.0)-eV photon-energy range. Magnetic ordering gives rise to the disappearance of transitions involving specific regions of the Fermi surface. New critical-point absorptions appear at the boundaries of the new Brillouin zone in antiferromagnetic Cr. Most of the observed experimental features have been identified by comparison with recent band-structure calculations

    Optical properties and electronic structure of β′−NiAl

    Get PDF
    The optical constants and their temperature derivatives have been determined for β′−NiAl from absorption and thermoreflectance measurements in the energy range of 0.2-4.4 eV. The results are interpreted using the self-consistent energy bands of Moruzzi, Williams, and Gelatt. By comparing a calculated joint density of states with ε2, the imaginary part of the dielectric function, good overall agreement is found between theory and experiment. In contrast to earlier analyses, it is found that the 2.5-eV peak in ε2 is primarily due to direct interband transitions terminating near the Fermi surface. This new interpretation of the 2.5-eV feature is discussed in relation to previously reported concentration effects and the rigid-band model

    Estrogen signaling in the cardiovascular system

    Get PDF
    Estrogen exerts complex biological effects through the two isoforms of estrogen receptors (ERs): ERα and ERβ. Whether through alteration of gene expression or rapid, plasma membrane-localized signaling to non-transcriptional actions, estrogen-activated ERs have significant implications in cardiovascular physiology. 17-β-estradiol (E2) generally has a protective property on the vasculature. Estrogen treatment is anti-atherogenic, protecting injured endothelial surfaces and lowering LDL oxidation in animal models. Increased NO production stimulated by E2 results in vasodilation of the coronary vascular bed, and involves rapid activation of phosphotidylinositol-3 kinase (PI3K)/Akt signaling to eNOS in carotid and femoral arteries. Both isoforms of ERs impact various vascular functions, modulating ion channel integrity, mitigating the response to arterial injury, inducing vasodilation, and preventing development of hypertension in animal models. In addition to reducing afterload by vasodilation, ERs have a direct antihypertrophic effect on the myocardium. E2-activated ERs (E2/ER) antagonize the hypertrophic pathway induced by vasoactive peptides such as angiotensin II by activating PI3K, subsequent MICIP gene expression, leading to the inhibition of calcineurin activity and the induction of hypertrophic genes. In models of ischemia-reperfusion, E2/ER is antiapoptotic for cardiomyocytes, exerting the protective actions via PI3K and p38 MAP kinases and suppressing the generation of reactive oxygen species. In sum, E2-activated ERs consistently and positively modulate multiple aspects of the cardiovascular system

    Electronic structure of Nb-Mo alloys

    Get PDF
    Thermoreflectance measurements on NbxMo1−x alloys (x=0.2, 0.5, 0.8) have been carried out in the 0.5-5.0 eV energy region. Augmented-plane-wave (APW) calculations for Nb at two different lattice parameters and for Mo, as well as coherent-potential-approximation calculations (CPA), have been carried out and have been used in the interpretation of the experimental results. Several optical transitions [Σ1(EF)→Σ3, G4(EF)→G1,N2→N′1], have been identified, and their concentration dependence followed. These results contribute significantly toward putting the interpretation of the optical properties of Nb, Mo, and their alloys on a much more secure footing. In particular, it has been confirmed that while the lower conduction bands behave roughly as predicted by the rigid-band model, the higher-lying conduction bands show distinctly non-rigid-band-like behavior
    • …
    corecore