40,391 research outputs found
Wave propagation in stepped and joined shells Annual report, 1 Sep. 1968 - 1 Sep. 1969
Shell impact response and wave propagation in cylindrical and conical shells by experimental and analytical method
Comments on Anomaly Cancellations by Pole Subtractions and Ghost Instabilities with Gravity
We investigate some aspects of anomaly cancellation realized by the
subtraction of an anomaly pole, stressing on some of its properties in
superspace. In a local formulation these subtractions can be described in terms
of a physical scalar, an axion and related ghosts. They appear to be necessary
for the unitarization of the theory in the ultraviolet, but they may generate
an infrared instability of the corresponding effective action, signalled by
ghost condensation. In particular the subtraction of the superanomaly multiplet
by a pole in superspace is of dubious significance, due to the different nature
of the chiral and conformal anomalies. In turn, this may set more stringent
constraints on the coupling of supersymmetric theories to gravity.Comment: 18 pages. Revised version. To appear in "Classical and Quantum
Gravity
Giant electrocaloric effect around T
We use molecular dynamics with a first-principles-based shell model potential
to study the electrocaloric effect (ECE) in lithium niobate, LiNbO, and
find a giant electrocaloric effect along a line passing through the
ferroelectric transition. With applied electric field, a line of maximum ECE
passes through the zero field ferroelectric transition, continuing along a
Widom line at high temperatures with increasing field, and along the
instability that leads to homogeneous ferroelectric switching below with
an applied field antiparallel to the spontaneous polarization. This line is
defined as the minimum in the inverse capacitance under applied electric field.
We investigate the effects of pressure, temperature and applied electric field
on the ECE. The behavior we observe in LiNbO should generally apply to
ferroelectrics; we therefore suggest that the operating temperature for
refrigeration and energy scavenging applications should be above the
ferroelectric transition region to obtain large electrocaloric response. We
find a relationship among , the Widom line and homogeneous switching that
should be universal among ferroelectrics, relaxors, multiferroics, and the same
behavior should be found under applied magnetic fields in ferromagnets.Comment: 5 page
“I wish I’d told them”: a qualitative study examining the unmet psychosexual needs of prostate cancer patients during follow-up after treatment
<b>Objective</b> To gain insight into patients' experiences of follow-up care after treatment for prostate cancer and identify unmet psychosexual needs.<p></p>
<b>Methods</b> Semi-structured interviews were conducted with a purposive sample of 35 patients aged 59-82 from three UK regions. Partners were included in 18 interviews. Data were analyzed using constant comparison. <p></p>
<b>Results</b> (1) Psychosexual problems gained importance over time, (2) men felt they were rarely invited to discuss psychosexual side effects within follow-up appointments and lack of rapport with health care professionals made it difficult to raise problems themselves, (3) problems were sometimes concealed or accepted and professionals' attempts to explore potential difficulties were resisted by some, and (4) older patients were too embarrassed to raise psychosexual concerns as they felt they would be considered 'too old' to be worried about the loss of sexual function.<p></p>
<b>Conclusion</b> Men with prostate cancer, even the very elderly, have psychosexual issues for variable times after diagnosis. These are not currently always addressed at the appropriate time for the patient.Practice implications Assessments of psychosexual problems should take place throughout the follow-up period, and not only at the time of initial treatment. Further research examining greater willingness or reluctance to engage with psychosexual interventions may be particularly helpful in designing future intervention
Angular Correlations in Internal Pair Conversion of Aligned Heavy Nuclei
We calculate the spatial correlation of electrons and positrons emitted by
internal pair conversion of Coulomb excited nuclei in heavy ion collisions. The
alignment or polarization of the nucleus results in an anisotropic emission of
the electron-positron pairs which is closely related to the anisotropic
emission of -rays. However, the angular correlation in the case of
internal pair conversion exhibits diverse patterns. This might be relevant when
investigating atomic processes in heavy-ion collisions performed at the Coulomb
barrier.Comment: 27 pages + 6 eps figures, uses revtex.sty and epsf.sty,
tar-compressed and uuencoded with uufile
The relativistic self-energy in nuclear dynamics
It is a well known fact that Dirac phenomenology of nuclear forces predicts
the existence of large scalar and vector mean fields in matter. To analyse the
relativistic self-energy in a model independent way, modern high precision
nucleon-nucleon () potentials are mapped on a relativistic operator basis
using projection techniques. This allows to compare the various potentials at
the level of covariant amplitudes were a remarkable agreement is found. It
allows further to calculate the relativistic self-energy in nuclear matter in
Hartree-Fock approximation. Independent of the choice of the nucleon-nucleon
interaction large scalar and vector mean fields of several hundred MeV
magnitude are generated at tree level. In the framework of chiral EFT these
fields are dominantly generated by contact terms which occur at next-to-leading
order in the chiral expansion. Consistent with Dirac phenomenology the
corresponding low energy constants which generate the large fields are closely
connected to the spin-orbit interaction in scattering. The connection to
QCD sum rules is discussed as well.Comment: 49 pages, 13 figure
Inertial Upper Stage (IUS) software analysis
The Inertial Upper Stage (IUS) System, an extension of the Space Transportation System (STS) operating regime to include higher orbits, orbital plane changes, geosynchronous orbits, and interplanetary trajectories is presented. The IUS software design, the IUS software interfaces with other systems, and the cost effectiveness in software verification are described. Tasks of the IUS discussed include: (1) design analysis; (2) validation requirements analysis; (3) interface analysis; and (4) requirements analysis
Outstanding Educational Performance Awards: Highlighting Top Achieving Arkansas Schools, 2009
Since our founding in 2003, the mission of the Office for Education Policy has been to look at pressing issues through the lens of academic research and disseminate our findings to educators, policymakers, and other stakeholders around Arkansas. Every once in a while, however, we think it is okay to stray from issue analysis and simply share some good news! So, in this Arkansas Education Report (AER) we merely aim to highlight excellent performance and give our congratulations. To that end, we are happy to highlight the top performing schools around the state in an annual AER entitled the Outstanding Educational Performance Awards
Planar Josephson Tunnel Junctions in a Transverse Magnetic Field
Traditionally, since the discovery of the Josephson effect in 1962, the
magnetic diffraction pattern of planar Josephson tunnel junctions has been
recorded with the field applied in the plane of the junction. Here we discuss
the static junction properties in a transverse magnetic field where
demagnetization effects imposed by the junction geometry and configuration of
the electrodes are important. Measurements of the critical current versus
magnetic field in planar Nb-based high-quality junctions with different
geometry, size and critical current density show that it is advantageous to use
a transverse magnetic field rather than an in-plane field to suppress the
Josephson tunnel current and Fiske resonances in practical applications.Comment: 5 pages, 2 figures, submitted to Journal of Applied Physic
Vlasov simulation in multiple spatial dimensions
A long-standing challenge encountered in modeling plasma dynamics is
achieving practical Vlasov equation simulation in multiple spatial dimensions
over large length and time scales. While direct multi-dimension Vlasov
simulation methods using adaptive mesh methods [J. W. Banks et al., Physics of
Plasmas 18, no. 5 (2011): 052102; B. I. Cohen et al., November 10, 2010,
http://meetings.aps.org/link/BAPS.2010.DPP.NP9.142] have recently shown
promising results, in this paper we present an alternative, the Vlasov Multi
Dimensional (VMD) model, that is specifically designed to take advantage of
solution properties in regimes when plasma waves are confined to a narrow cone,
as may be the case for stimulated Raman scatter in large optic f# laser beams.
Perpendicular grid spacing large compared to a Debye length is then possible
without instability, enabling an order 10 decrease in required computational
resources compared to standard particle in cell (PIC) methods in 2D, with
another reduction of that order in 3D. Further advantage compared to PIC
methods accrues in regimes where particle noise is an issue. VMD and PIC
results in a 2D model of localized Langmuir waves are in qualitative agreement
- …