9 research outputs found

    Chemical Imaging of Thermoplastic Olefin (TPO) Surface Architecture

    No full text
    In the automotive industry, ethylene−propylene rubber (EPR) is mixed with polypropylene (PP) to form a thermoplastic olefin (TPO) for use as car bumpers and fascia. An adhesion promoting primer, chlorinated polyolefin (CPO), is spray coated onto the TPO surface to increase adhesion of the base and clear coat paints to the low surface free energy TPO substrate. The surface morphology of rubber domains within the CPO-coated TPO substrate contributes strongly to the material characteristics, including impact resistance and adhesion properties. However, elastomer-phase analysis is challenging using traditional microanalysis imaging techniques. We employ fluorescence and Raman chemical imaging to characterize the TPO architecture in order to better understand the surface properties of coated TPO. Fluorescence imaging makes use of Nile red (NR), a fluorescent solvatochromic dye, solvated in the primer, which is effective in differentiating rubber from polypropylene on the basis of large variations in the fluorescence quantum efficiency. Confocal fluorescence chemical imaging performed on TPO coated with NR-doped CPO shows a thin (2−3 μm) layer of elastomer that has migrated to the TPO surface. Raman chemical imaging is in direct agreement with the fluorescence experiments by measuring the intrinsic vibrational signatures of CPO, EPR, and PP without the need for dyes or stains. Raman contrast is enhanced using cosine correlation analysis, a novel multivariate processing technique that provides chemical contrast on the basis of differences in spectral shape

    Stratified morphology of a polypropylene/elastomer blend following channel flow

    No full text
    International audienceA thermoplastic olefin blend consisting of isotactic polypropylene (PP) and an ethylene-butene copolymer (EBR) impact modifier (25 wt % EBR) was subjected to a short, high-shear pulse within the flow channel of a pressure-driven microextruder following low-shear channel filling from a reservoir of the melt. The resulting morphology was examined by laser scanning confocal fluorescence microscopy (LSCFM), with contrast provided by a fluorescent tracer in the EBR minor phase. Shear experiments were performed under isothermal conditions with a known wall shear stress for a specified duration, providing a well-defined thermal and flow history. Low-shear channel filling produces small droplets across the central region of the channel and large droplets, consistent with steady-state shear, in the regions near the channel walls. After cooling the molten blend to a crystallization temperature of 153 °C, a brief interval (5 s 1/2000 of the quiescent crystallization time) of high shear (wall shear stress: 0.1 MPa) induces rapid, highly oriented crystallization and a stratified morphology. Ex situ LSCFM reveals a skin at the channel walls (70 m) in which greatly elongated fiberlike droplets, oriented along the flow direction, are embedded in highly oriented crystalline PP. Further from the walls but directly beside the skin layers are surprising zones in which EBR domains show no deformation or orientation. Several zones of intermediate deformation and orientation at an angle to the flow direction are located closer to the center of the channel. At the center of the channel, EBR droplets are spherical, as expected for channel flow. The various strata are explained by the interplay of droplet deformation, breakup, and coalescence with the shear-induced crystallization kinetics of the matrix. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2842-2859, 200
    corecore