36 research outputs found

    Immune dysregulation as a cause of autoinflammation in fragile X premutation carriers: link between FMRI CGG repeat number and decreased cytokine responses.

    Get PDF
    BackgroundIncreased rates of autoinflammatory and autoimmune disorders have been observed in female premutation carriers of CGG repeat expansion alleles of between 55-200 repeats in the fragile X mental retardation 1 (FMR1) gene. To determine whether an abnormal immune profile was present at a cellular level that may predispose female carriers to autoinflammatory conditions, we investigated dynamic cytokine production following stimulation of blood cells. In addition, splenocyte responses were examined in an FMR1 CGG knock-in mouse model of the fragile X premutation.MethodsHuman monocyte and peripheral blood leukocytes (PBLs) were isolated from the blood of 36 female FMR1 premutation carriers and 15 age-matched controls. Cells were cultured with media alone, LPS or PHA. In the animal model, splenocytes were isolated from 32 CGG knock-in mice and 32 wild type littermates. Splenocytes were cultured with media alone or LPS or PMA/Ionomycin. Concentrations of cytokines (GM-CSF, IL-1β, IL-6, IL-10, IL-13, IL-17, IFNγ, TNFα, and MCP-1) were determined from the supernatants of cellular cultures via Luminex multiplex assay. Additionally, phenotypic cellular markers were assessed on cells isolated from human subjects via flow cytometry.ResultsWe found decreases in cytokine production in human premutation carriers as well as in the FMR1 knock-in mice when compared with controls. Levels of cytokines were found to be associated with CGG repeat length in both human and mouse. Furthermore, T cells from human premutation carriers showed decreases in cell surface markers of activation when compared with controls.ConclusionsIn this study, FMR1 CGG repeat expansions are associated with decreased immune responses and immune dysregulation in both humans and mice. Deficits in immune responses in female premutation carriers may lead to increased susceptibility to autoimmunity and further research is warranted to determine the link between FMR1 CGG repeat lengths and onset of autoinflammatory conditions

    Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders

    Get PDF
    Autism spectrum disorders (ASD) are a group of heterogeneous neurological disorders that are highly variable and are clinically characterized by deficits in social interactions, communication, and stereotypical behaviors. Prevalence has risen from 1 in 10,000 in 1972 to 1 in 59 children in the United States in 2014. This rise in prevalence could be due in part to better diagnoses and awareness, however, these together cannot solely account for such a significant rise. While causative connections have not been proven in the majority of cases, many current studies focus on the combined effects of genetics and environment. Strikingly, a distinct picture of immune dysfunction has emerged and been supported by many independent studies over the past decade. Many players in the immune-ASD puzzle may be mechanistically contributing to pathogenesis of these disorders, including skewed cytokine responses, differences in total numbers and frequencies of immune cells and their subsets, neuroinflammation, and adaptive and innate immune dysfunction, as well as altered levels of immunoglobulin and the presence of autoantibodies which have been found in a substantial number of individuals with ASD. This review summarizes the latest research linking ASD, autoimmunity and immune dysfunction, and discusses evidence of a potential autoimmune component of ASD

    Plasma and Fecal Metabolite Profiles in Autism Spectrum Disorder

    Get PDF
    Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition with hallmark behavioral manifestations including impaired social communication and restricted repetitive behavior. In addition, many affected individuals display metabolic imbalances, immune dysregulation, gastrointestinal (GI) dysfunction, and altered gut microbiome compositions. Methods: We sought to better understand non-behavioral features of ASD by determining molecular signatures in peripheral tissues through mass spectrometry methods (LC/MS and DMS-MS) with broad panels of identified metabolites. Herein, we present the global metabolome of 231 plasma and 97 fecal samples from a large cohort of children with ASD and typically developing (TD) controls. Results: Differences in amino acid, lipid, and xenobiotic metabolism discriminate ASD and TD samples. Our results implicate oxidative stress and mitochondrial dysfunction, hormone level elevations, lipid profile changes, and altered levels of phenolic microbial metabolites. We also reveal correlations between specific metabolite profiles and clinical behavior scores. Furthermore, a summary of metabolites modestly associated with GI dysfunction in ASD are provided, and a pilot study of metabolites that can be transferred via fecal microbial transplant into mice were identified. Conclusions: These findings support a connection between metabolism, GI physiology, and complex behavioral traits, and may advance discovery and development of molecular biomarkers for ASD

    Rapid Communication: Plasma Interleukin-35 in Children with Autism

    No full text
    In autism spectrum disorders (ASD) many individuals have co-morbid immune dysregulation that can lead to inflammation in the brain and periphery. The novel cytokine interleukin (IL)-35 has described anti-inflammatory properties; however, the plasma levels of IL-35 in children with ASD have never been investigated. The plasma levels of IL-35 were measured by an enzyme-linked immunosorbent assay in 30 children with ASD and 39 typically developing (TD) controls. In the current study, we found that plasma IL-35 levels were significantly decreased in children with ASD compared with TD children. Furthermore, lower IL-35 levels were associated with worse behaviors as assessed using the aberrant behavior checklist. These findings are in line with other observations of decreased regulatory cytokines such as transforming growth factor beta and IL-10 in ASD, and associations with severity of behaviors. In conclusion, regulating the expression of IL-35 may provide a new possible target for the treatment of immune issues in ASD to address an imbalance between pro- and anti-inflammatory signals that alter the behavioral phenotype
    corecore