2,815 research outputs found

    Beyond conventional factorization: Non-Hermitian Hamiltonians with radial oscillator spectrum

    Full text link
    The eigenvalue problem of the spherically symmetric oscillator Hamiltonian is revisited in the context of canonical raising and lowering operators. The Hamiltonian is then factorized in terms of two not mutually adjoint factorizing operators which, in turn, give rise to a non-Hermitian radial Hamiltonian. The set of eigenvalues of this new Hamiltonian is exactly the same as the energy spectrum of the radial oscillator and the new square-integrable eigenfunctions are complex Darboux-deformations of the associated Laguerre polynomials.Comment: 13 pages, 7 figure

    The supersymmetric modified Poschl-Teller and delta-well potentials

    Get PDF
    New supersymmetric partners of the modified Poschl-Teller and the Dirac's delta well potentials are constructed in closed form. The resulting one-parametric potentials are shown to be interrelated by a limiting process. The range of values of the parameters for which these potentials are free of singularities is exactly determined. The construction of higher order supersymmetric partner potentials is also investigated.Comment: 20 pages, LaTeX file, 4 eps figure

    Quantum mechanical spectral engineering by scaling intertwining

    Full text link
    Using the concept of spectral engineering we explore the possibilities of building potentials with prescribed spectra offered by a modified intertwining technique involving operators which are the product of a standard first-order intertwiner and a unitary scaling. In the same context we study the iterations of such transformations finding that the scaling intertwining provides a different and richer mechanism in designing quantum spectra with respect to that given by the standard intertwiningComment: 8 twocolumn pages, 5 figure

    Optical potentials using resonance states in Supersymmetric Quantum Mechanics

    Full text link
    Complex potentials are constructed as Darboux-deformations of short range, radial nonsingular potentials. They behave as optical devices which both refracts and absorbs light waves. The deformation preserves the initial spectrum of energies and it is implemented by means of a Gamow-Siegert function (resonance state). As straightforward example, the method is applied to the radial square well. Analytical derivations of the involved resonances show that they are `quantized' while the corresponding wave-functions are shown to behave as bounded states under the broken of parity symmetry of the related one-dimensional problem.Comment: 16 pages, 6 figures, 1 tabl

    Extended WKB method, resonances and supersymmetric radial barriers

    Full text link
    Semiclassical approximations are implemented in the calculation of position and width of low energy resonances for radial barriers. The numerical integrations are delimited by t/T<<8, with t the period of a classical particle in the barrier trap and T the resonance lifetime. These energies are used in the construction of `haired' short range potentials as the supersymmetric partners of a given radial barrier. The new potentials could be useful in the study of the transient phenomena which give rise to the Moshinsky's diffraction in time.Comment: 12 pages, 4 figures, 3 table

    Calculation of Band Edge Eigenfunctions and Eigenvalues of Periodic Potentials through the Quantum Hamilton - Jacobi Formalism

    Full text link
    We obtain the band edge eigenfunctions and the eigenvalues of solvable periodic potentials using the quantum Hamilton - Jacobi formalism. The potentials studied here are the Lam{\'e} and the associated Lam{\'e} which belong to the class of elliptic potentials. The formalism requires an assumption about the singularity structure of the quantum momentum function pp, which satisfies the Riccati type quantum Hamilton - Jacobi equation, p2iddxp=2m(EV(x)) p^{2} -i \hbar \frac{d}{dx}p = 2m(E- V(x)) in the complex xx plane. Essential use is made of suitable conformal transformations, which leads to the eigenvalues and the eigenfunctions corresponding to the band edges in a simple and straightforward manner. Our study reveals interesting features about the singularity structure of pp, responsible in yielding the band edge eigenfunctions and eigenvalues.Comment: 21 pages, 5 table

    Coherent states for Hamiltonians generated by supersymmetry

    Full text link
    Coherent states are derived for one-dimensional systems generated by supersymmetry from an initial Hamiltonian with a purely discrete spectrum for which the levels depend analytically on their subindex. It is shown that the algebra of the initial system is inherited by its SUSY partners in the subspace associated to the isospectral part or the spectrum. The technique is applied to the harmonic oscillator, infinite well and trigonometric Poeschl-Teller potentials.Comment: LaTeX file, 26 pages, 3 eps figure

    Non-Hermitian SUSY Hydrogen-like Hamiltonians with real spectra

    Get PDF
    It is shown that the radial part of the Hydrogen Hamiltonian factorizes as the product of two not mutually adjoint first order differential operators plus a complex constant epsilon. The 1-susy approach is used to construct non-hermitian Hamiltonians with hydrogen spectra. Other non-hermitian Hamiltonians are shown to admit an extra `complex energy' at epsilon. New self-adjoint hydrogen-like Hamiltonians are also derived by using a 2-susy transformation with complex conjugate pairs epsilon, (c.c) epsilon.Comment: LaTeX2e file, 13 pages, 6 EPS figures. New references added. The present is a reorganized and simplified versio

    N-fold Supersymmetry in Quantum Mechanics - Analyses of Particular Models -

    Get PDF
    We investigate particular models which can be N-fold supersymmetric at specific values of a parameter in the Hamiltonians. The models to be investigated are a periodic potential and a parity-symmetric sextic triple-well potential. Through the quantitative analyses on the non-perturbative contributions to the spectra by the use of the valley method, we show how the characteristic features of N-fold supersymmetry which have been previously reported by the authors can be observed. We also clarify the difference between quasi-exactly solvable and quasi-perturbatively solvable case in view of the dynamical property, that is, dynamical N-fold supersymmetry breaking.Comment: 32 pages, 10 figures, REVTeX
    corecore