2 research outputs found

    Prevalence of HPV in Mexican Patients with Head and Neck Squamous Carcinoma and Identification of Potential Prognostic Biomarkers

    No full text
    Head and neck squamous cell carcinomas (HNSCC) show a variety of biological and clinical characteristics that could depend on the association with the human papillomavirus (HPV). Biological and clinical characterization is essential to stratify patients based on prognostic and predictive factors. Reports on HNSCC are scarce in Mexico. Herein, we analyzed 414 Mexican patients with HNSCC, including oropharynx (OPSCC), larynx (LASCC), and oral cavity (OCSCC), and identified HPV DNA and p16 expression. Global gene expression profiles were analyzed in 25 HPV+/p16+ vs. HPV−/p16− cases. We found 32.3% p16+ and 22.3% HPV+ samples, HPV 16, 18, 39, 52, and 31 being the most frequent genotypes. For OPSCC, LASCC and OCSCC, 39.2, 14.7, and 9.6% were HPV+/p16+, respectively. High expression of SLIRP, KLF10, AREG, and LIMA was associated with poor survival; in contrast, high expression of MYB and SYCP2 correlated with better survival. In HPV+ cases, high expression of SLC25A39 and GJB2 was associated with poor survival. Likewise, EGFR, IL-1, IL-6, JAK-STAT, WNT, NOTCH, and ESR1 signaling pathways were downregulated in HPV+ cases. CSF1R, MYC, and SRC genes were identified as key hubs and therapeutic targets. Our study offers information regarding the molecular and clinical characteristics of HNSCC in Mexican patients

    Phenethyl isothiocyanate hampers growth and progression of HER2-positive breast and ovarian carcinoma by targeting their stem cell compartment

    Get PDF
    © 2019, International Society for Cellular Oncology. Purpose: Isothiocyanates elicit anticancer effects by targeting cancer stem cells (CSCs). Here, we tested the antitumor activity of phenethyl-isothiocyanate (PEITC), either alone or in combination with trastuzumab, in HER2-positive tumor models. Methods: We assessed the in vitro anticancer activity of PEITC, alone or combined with trastuzumab, in HER2-positive BT474, SKBR3, HCC1954 and SKOV3 cancer cells by measuring their sphere forming efficiency (SFE). The expression of the human/rodent CSC biomarkers aldehyde-dehydrogenase (ALDH) and CD29High/CD24+/Sca1Low was evaluated by cytofluorimetric analysis. The expression of wild type HER2 (WTHER2), its splice variant d16HER2 and NOTCH was analysed by quantitative RT-PCR and Western blotting. The in vivo activity of PEITC and trastuzumab was evaluated in mice orthotopically implanted with MI6 tumor cells transgenic for the human d16HER2 splice isoform. Magnetic resonance imaging/spectroscopy and immunohistochemistry were used to assess morpho-functional and metabolic profiles of treated versus untreated mice. Results: We found that PEITC significantly impaired the SFE of HER2-positive human cancer cells by decreasing their ALDH-positive compartments. The anti-CSC activity of PEITC was demonstrated by a reduced expression/activation of established cancer-stemness biomarkers. Similar results were obtained with MI6 cells, where PEITC, alone or in combination with trastuzumab, significantly inhibited their SFE. We also found that PEITC hampered the in vivo growth of MI6 nodules by inducing hemorrhagic and necrotic intra-tumor areas and, in combination with trastuzumab, by significantly reducing spontaneous tumor development in d16HER2 transgenic mice. Conclusions: Our results indicate that PEITC targets HER2-positive CSCs and that its combination with trastuzumab may pave the way for a novel therapeutic strategy for HER2-positive tumors
    corecore