2 research outputs found

    Defend as You Can, React Quickly: The Effects of the COVID-19 Shock on a Large Fishery of the Mediterranean Sea

    Get PDF
    This paper presents an analysis of the effect of SARS-CoV-2 coronavirus pandemic and related restrictive measures on the activity of the Italian fleet of trawlers, which represents one of the most important fisheries in the Mediterranean Sea. We integrated multiple sources of information including: (1) Fleet activity data from Vessel Monitoring System, the most important satellite-based tracking device; (2) vessel-specific landing data disaggregated by species; (3) market and economic drivers affecting the effort variation during the lockdown and in the related fishing strategies; (4) monthly landings of demersal species in the main Italian harbors. These data sources are combined to: (1) Assess the absolute and relative changes of trawling effort in the geographical sub- areas surrounding the Italian coasts; (2) integrate and compare these changes with the market and economic drivers in order to explain the observed changes in fishing effort and strategy; (3) analyze the changes of the fishing effort on the Landing-per-unit- effort (LPUE) in order to further understand the strategy adopted by fishers during this crisis and to infer the potential consequence for the different stocks. The results provide an overview of the effects of the “COVID-19 shock,” in terms of fishing activity and socio-economic drivers, demonstrating that the consequences of the pandemic have been very varied. Although the COVID-19 shock has caused a marked overall reduction in activity in the first semester of 2020, in some cases the strategies adopted by fishermen and the commercial network linked to their activity have significantly reduced the impact of the emergency and taken back catch and effort to levels similar to those of previous years. These results could provide insights for management measures based on temporal stops of fishing activities. In particular, if no limits to the fishing effort after the restart of fishing activities are adopted, the benefits of fishing pressure reduction on fishery resources could be nullified. On the other hands, when fishing activities restart, and in the absence of catch control, effort tends to increase on coastal bottoms characterized by greater abundance of resources and longer effective fishing time

    Simulating the Effects of Alternative Management Measures of Trawl Fisheries in the Central Mediterranean Sea: Application of a Multi-Species Bio-economic Modeling Approach

    Get PDF
    In the last decades, the Mediterranean Sea experienced an increasing trend of fish stocks in overfishing status. Therefore, management actions to achieve a more sustainable exploitation of fishery resources are required and compelling. In this study, a spatially explicit multi-species bio-economic modeling approach, namely, SMART, was applied to the case study of central Mediterranean Sea to assess the potential effects of different trawl fisheries management scenarios on the demersal resources. The approach combines multiple modeling components, integrating the best available sets of spatial data about catches and stocks, fishing footprint from vessel monitoring systems (VMS) and economic parameters in order to describe the relationships between fishing effort pattern and impacts on resources and socio-economic consequences. Moreover, SMART takes into account the bi-directional connectivity between spawning and nurseries areas of target species, embedding the outcomes of a larvae transport Lagrangian model and of an empirical model of fish migration. Finally, population dynamics and trophic relationships are considered using a MICE (Models of Intermediate Complexity) approach. SMART simulates the fishing effort reallocation resulting from the introduction of different management scenarios. Specifically, SMART was applied to evaluate the potential benefits of different management approaches of the trawl fisheries targeting demersal stocks (deepwater rose shrimp Parapenaeus longirostris, the giant red shrimp Aristaeomorpha foliacea, the European hake Merluccius merluccius, and the red mullet Mullus barbatus) in the Strait of Sicily. The simulated management scenarios included a reduction of both fishing capacity and effort, two different sets of temporal fishing closures, and two sets of spatial fishing closures, defined involving fishers. Results showed that both temporal and spatial closures are expected to determine a significant improvement in the exploitation pattern for all the species, ultimately leading to the substantial recovery of spawning stock biomass for the stocks. Overall, one of the management scenarios suggested by fishers scored better and confirms the usefulness of participatory approaches, suggesting the need for more public consultation when dealing with resource management at sea
    corecore