10 research outputs found

    Development of a novel active edible coating containing hydroxyapatite for food shelf-life extension

    Get PDF
    In this work, active alginate-based coatings were developed using hydroxyapatite nanoparticles as potential carriers for quercetin glycoside compounds. The coatings were produced through the layer-by-layer method and loaded with different concentrations of quercetin and hydroxyapatite/quercetin complexes. In-vitro release studies of the quercetin through the coatings were performed in an aqueous medium: even if the hydroxyapatite nanocrystals slow down the diffusion process, quercetin released reached the equilibrium in one day for all coatings. Lastly, antimicrobial tests show that all active coatings display antibacterial activity against Pseudomonas fluorescens. This study highlights the real possibility of applying active edible coating loaded with hydroxyapatite/quercetin complexes to the food shelf life extension

    Alginate Coating Charged by Hydroxyapatite Complexes with Lactoferrin and Quercetin Enhances the Pork Meat Shelf Life

    No full text
    In this work, the effect of an alginate-based coating loaded with hydroxyapatite/lactoferrin/quercetin (HA/LACTO-QUE) complexes during the storage of pork meat was evaluated. FT-IR spectra of HA/LACTO-QUE complexes confirmed the adsorption of QUE and LACTO into HA crystals showing the characteristic peaks of both active compounds. The kinetic releases of QUE and LACTO from coatings in an aqueous medium pointed out a faster release of LACTO than QUE. The activated alginate-based coating showed a high capability to slow down the growth of total viable bacterial count, psychotropic bacteria count, Pseudomonas spp. and Enterobacteriaceae during 15 days at 4 °C, as well as the production of the total volatile basic nitrogen. Positive effects were found for maintaining the hardness and water-holding capacity of pork meat samples coated with the activated edible coatings. Sensory evaluation results demonstrated that the active alginate-based coating was effective to preserve the colour and odour of fresh pork meat with overall acceptability up to the end of storage time

    Humic substances from composted fennel residues control the inflammation induced by Helicobacter pylori infection in AGS cells

    No full text
    Helicobacter pylori (H. pylori) is a common human pathogen causing inflammation. Recent studies have suggested a sophisticated interplay between mitochondria, innate immunity and inflammatory response, thus proposing mitochondrial disfunction as the hallmark of severe inflammatory disorders. In this study, humic substances isolated from composted fennel residues (HS-FEN) were tested as potential therapeutical strategy to restore the mitochondrial physiology and control the inflammation associated with H. pylori infection. The molecular features of HS-FEN were characterized by infrared spectrometry, thermochemolysis-GC/MS, NMR spectroscopy, and high-performance size-exclusion chromatography (HPSEC), which revealed the presence of aromatic polyphenolic components arranged in a rather stable conformation. In vitro results showed antioxidant and anti-inflammatory properties of HS-FEN, that was found to increase the expression level of OPA-1 and SOD-2 genes and in AGS cells stimulated with H. pylori culture filtrate (Hpcf) and concomitantly decrease the expression level of Drp-1 gene and IL-12, IL-17 and G-CSF proteins. The hydrophobic features of HS, their conformational arrangement and large content of bioactive molecules may explain the beneficial effects of HS-FEN, that may potentially become an interesting source of anti-inflammatory agents capable to counteract or prevent the H. pylori-related inflammatory disorders

    Production and Characterization of Medium-Sized and Short Antioxidant Peptides from Soy Flour-Simulated Gastrointestinal Hydrolysate

    No full text
    Soybeans (Glycine max) are an excellent source of dietary proteins and peptides with potential biological activities, such as antihypertensive, anti-cholesterol, and antioxidant activity; moreover, they could prevent cancer. Also, soy contains all the essential amino acids for nutrition; therefore, it represents an alternative to animal proteins. The goal of this paper was the comprehensive characterization of medium-sized and short peptides (two to four amino acids) obtained from simulated gastrointestinal digestion. Two different analytical approaches were employed for peptide characterization, namely a common peptidomic analysis for medium-sized peptides and a suspect screening analysis for short peptides, employing an inclusion list of exact m/z values of all possible amino acid combinations. Moreover, fractionation by preparative reversed-phase liquid chromatography was employed to simplify the starting protein hydrolysate. Six fractions were collected and tested for antioxidative activity by an innovative antioxidant assay on human gastric adenocarcinoma AGS cell lines. The two most active fractions (2 and 3) were then characterized by a peptidomic approach and database search, as well as by a suspect screening approach, in order to identify potential antioxidant amino acid sequences. Some of the peptides identified in these two fractions have been already reported in the literature for their antioxidant activity

    Bacteriophage-Resistant <i>Salmonella rissen</i>: An In Vitro Mitigated Inflammatory Response

    No full text
    Non-typhoid Salmonella (NTS) represents one of the major causes of foodborne diseases, which are made worse by the increasing emergence of antibiotic resistance. Thus, NTS are a significant and common public health concern. The purpose of this study is to investigate whether selection for phage-resistance alters bacterial phenotype, making this approach suitable for candidate vaccine preparation. We therefore compared two strains of Salmonella enterica serovar Rissen: RR (the phage-resistant strain) and RW (the phage-sensitive strain) in order to investigate a potential cost associated with the bacterium virulence. We tested the ability of both RR and RW to infect phagocytic and non-phagocytic cell lines, the activity of virulence factors associated with the main Type-3 secretory system (T3SS), as well as the canonic inflammatory mediators. The mutant RR strain—compared to the wildtype RW strain—induced in the host a weaker innate immune response. We suggest that the mitigated inflammatory response very likely is due to structural modifications of the lipopolysaccharide (LPS). Our results indicate that phage-resistance might be exploited as a means for the development of LPS-based antibacterial vaccines

    Humic substances from composted fennel residues control the inflammation induced by Helicobacter pylori infection in AGS cells.

    No full text
    Helicobacter pylori (H. pylori) is a common human pathogen causing inflammation. Recent studies have suggested a sophisticated interplay between mitochondria, innate immunity and inflammatory response, thus proposing mitochondrial disfunction as the hallmark of severe inflammatory disorders. In this study, humic substances isolated from composted fennel residues (HS-FEN) were tested as potential therapeutical strategy to restore the mitochondrial physiology and control the inflammation associated with H. pylori infection. The molecular features of HS-FEN were characterized by infrared spectrometry, thermochemolysis-GC/MS, NMR spectroscopy, and high-performance size-exclusion chromatography (HPSEC), which revealed the presence of aromatic polyphenolic components arranged in a rather stable conformation. In vitro results showed antioxidant and anti-inflammatory properties of HS-FEN, that was found to increase the expression level of OPA-1 and SOD-2 genes and in AGS cells stimulated with H. pylori culture filtrate (Hpcf) and concomitantly decrease the expression level of Drp-1 gene and IL-12, IL-17 and G-CSF proteins. The hydrophobic features of HS, their conformational arrangement and large content of bioactive molecules may explain the beneficial effects of HS-FEN, that may potentially become an interesting source of anti-inflammatory agents capable to counteract or prevent the H. pylori-related inflammatory disorders

    Caulerpin Mitigates Helicobacter pylori-Induced Inflammation via Formyl Peptide Receptors

    No full text
    The identification of novel strategies to control Helicobacter pylori (Hp)-associated chronic inflammation is, at present, a considerable challenge. Here, we attempt to combat this issue by modulating the innate immune response, targeting formyl peptide receptors (FPRs), G-protein coupled receptors that play key roles in both the regulation and the resolution of the innate inflammatory response. Specifically, we investigated, in vitro, whether Caulerpin—a bis-indole alkaloid isolated from algae of the genus Caulerpa—could act as a molecular antagonist scaffold of FPRs. We showed that Caulerpin significantly reduces the immune response against Hp culture filtrate, by reverting the FPR2-related signaling cascade and thus counteracting the inflammatory reaction triggered by Hp peptide Hp(2–20). Our study suggests Caulerpin to be a promising therapeutic or adjuvant agent for the attenuation of inflammation triggered by Hp infection, as well as its related adverse clinical outcomes

    Analysis of Single Circulating Tumor Cells in Renal Cell Carcinoma Reveals Phenotypic Heterogeneity and Genomic Alterations Related to Progression

    No full text
    Circulating tumor cells (CTCs) are promising biomarkers for prognosis, therapeutic response prediction, and treatment monitoring in cancer patients. Despite its epithelial origin, renal cell carcinoma (RCC) shows low expression of epithelial markers hindering CTC-enrichment approaches exploiting epithelial cell surface proteins. In 21 blood samples serially collected from 10 patients with metastatic RCC entering the TARIBO trial, we overcame this limitation using the marker-independent Parsortix&trade; approach for CTC-enrichment coupled with positive and negative selection with the DEPArray&trade; with single cell recovery and analysis for copy number alterations (CNA) by next generation sequencing NGS. Two CTC subpopulations were identified: epithelial CTC (eCTC) and non-conventional CTC (ncCTC) lacking epithelial and leukocyte markers. With a threshold &ge;1CTC/10 mL of blood, the positivity rates were 28% for eCTC, 62% for ncCTCs, and 71% considering both CTC types. In two patients with detectable eCTCs at baseline, progression free survival was less than 5 months. In an index case, hierarchical structure by translational oncology (TRONCO) identified three clones among 14 CTCs collected at progression and at baseline, each containing cells with a 9p21.3loss, a well-known metastasis driving subclonal alteration. CTCs detection in RCC can be increased by marker-independent approaches, and CTC molecular characterization can allow detection of subclonal events possibly related to tumor progression
    corecore