17 research outputs found

    Tissue-Resident Innate Immune Cell-Based Therapy: A Cornerstone of Immunotherapy Strategies for Cancer Treatment

    Get PDF
    Cancer immunotherapy has led to impressive advances in cancer treatment. Unfortunately, in a high percentage of patients is difficult to consistently restore immune responses to eradicate established tumors. It is well accepted that adaptive immune cells, such as B lymphocytes, CD4+ helper T lymphocytes, and CD8+ cytotoxic T-lymphocytes (CTLs), are the most effective cells able to eliminate tumors. However, it has been recently reported that innate immune cells, including natural killer cells (NK), dendritic cells (DC), macrophages, myeloid-derived suppressor cells (MDSCs), and innate lymphoid cells (ILCs), represent important contributors to modulating the tumor microenvironment and shaping the adaptive tumor response. In fact, their role as a bridge to adaptive immunity, make them an attractive therapeutic target for cancer treatment. Here, we provide a comprehensive overview of the pleiotropic role of tissue-resident innate immune cells in different tumor contexts. In addition, we discuss how current and future therapeutic approaches targeting innate immune cells sustain the adaptive immune system in order to improve the efficacy of current tumor immunotherapies

    Klebsiella pneumoniae Lipopolysaccharides Serotype O2afg Induce Poor Inflammatory Immune Responses Ex Vivo

    Get PDF
    Currently, Klebsiella pneumoniae is a pathogen of clinical relevance due to its plastic ability of acquiring resistance genes to multiple antibiotics. During K. pneumoniae infections, lipopolysaccharides (LPS) play an ambiguous role as they both activate immune responses but can also play a role in immune evasion. The LPS O2a and LPS O2afg serotypes are prevalent in most multidrug resistant K. pneumoniae strains. Thus, we sought to understand if those two particular LPS serotypes were involved in a mechanism of immune evasion. We have extracted LPS (serotypes O1, O2a and O2afg) from K. pneumoniae strains and, using human monocytes ex vivo, we assessed the ability of those LPS antigens to induce the production of pro-inflammatory cytokines and chemokines. We observed that, when human monocytes are incubated with LPS serotypes O1, O2a or O2afg strains, O2afg and, to a lesser extent, O2a but not O1 failed to elicit the production of pro-inflammatory cytokines and chemokines, which suggests a role in immune evasion. Our preliminary data also shows that nuclear translocation of NF-κB, a process which regulates an immune response against infections, occurs in monocytes incubated with LPS O1 and, to a smaller extent, with LPS O2a, but not with the LPS serotype O2afg. Our results indicate that multidrug resistant K. pneumoniae expressing LPS O2afg serotypes avoid an initial inflammatory immune response and, consequently, are able to systematically spread inside the host unharmed, which results in the several pathologies associated with this bacterium

    A Radioactive-Free Method for the Thorough Analysis of the Kinetics of Cell Cytotoxicity

    No full text
    The cytotoxic activity of T cells and Natural Killer cells is usually measured with the chromium release assay (CRA), which involves the use of 51Chromium (51Cr), a radioactive substance dangerous to the operator and expensive to handle and dismiss. The accuracy of the measurements depends on how well the target cells incorporate 51Cr during labelling which, in turn, depends on cellular division. Due to bystander metabolism, the target cells spontaneously release 51Cr, producing a high background noise. Alternative radioactive-free methods have been developed. Here, we compare a bioluminescence (BLI)-based and a carboxyfluorescein succinimidyl ester (CFSE)-based cytotoxicity assay to the standard radioactive CRA. In the first assay, the target cells stably express the enzyme luciferase, and vitality is measured by photon emission upon the addition of the substrate d-luciferin. In the second one, the target cells are labelled with CFSE, and the signal is detected by Flow Cytometry. We used these two protocols to measure cytotoxicity induced by treatment with NK cells. The cytotoxicity of NK cells was determined by adding increasing doses of human NK cells. The results obtained with the BLI method were consistent with those obtained with the CRA- or CFSE-based assays 4 hours after adding the NK cells. Most importantly, with the BLI assay, the kinetic of NK cells’ killing was thoroughly traced with multiple time point measurements, in contrast with the single time point measurement the other two methods allow, which unveiled additional information on NK cell killing pathways

    Proof-of-Concept Analysis of B Cell Receptor Repertoire in COVID-19 Patients Undergoing ECMO by Single-Cell V(D)J and Gene Expression Sequencing

    No full text
    SARS-CoV-2, which causes COVID-19, has altered human activities all over the world and has become a global hazard to public health. Despite considerable advancements in pandemic containment techniques, in which vaccination played a key role, COVID-19 remains a global threat, particularly for frail patients and unvaccinated individuals, who may be more susceptible to developing ARDS. Several studies reported that patients with COVID-19-related ARDS who were treated with ECMO had a similar survival rate to those with COVID-19-unrelated ARDS. In order to shed light on the potential mechanisms underlying the COVID-19 infection, we conducted this proof-of-concept study using single-cell V(D)J and gene expression sequencing of B cells to examine the dynamic changes in the transcriptomic BCR repertoire present in patients with COVID-19 at various stages. We compared a recovered and a deceased COVID-19 patient supported by ECMO with one COVID-19-recovered patient who did not receive ECMO treatment and one healthy subject who had never been infected previously. Our analysis revealed a downregulation of FXYD, HLA-DRB1, and RPS20 in memory B cells; MTATP8 and HLA-DQA1 in naïve cells; RPS4Y1 in activated B cells; and IGHV3-73 in plasma cells in COVID-19 patients. We further described an increased ratio of IgA + IgG to IgD + IgM, suggestive of an intensive memory antibody response, in the COVID ECMO D patient. Finally, we assessed a V(D)J rearrangement of heavy chain IgHV3, IGHJ4, and IGHD3/IGHD2 families in COVID-19 patients regardless of the severity of the disease

    Proof-of-Concept Analysis of B Cell Receptor Repertoire in COVID-19 Patients Undergoing ECMO by Single-Cell V(D)J and Gene Expression Sequencing

    No full text
    SARS-CoV-2, which causes COVID-19, has altered human activities all over the world and has become a global hazard to public health. Despite considerable advancements in pandemic containment techniques, in which vaccination played a key role, COVID-19 remains a global threat, particularly for frail patients and unvaccinated individuals, who may be more susceptible to developing ARDS. Several studies reported that patients with COVID-19-related ARDS who were treated with ECMO had a similar survival rate to those with COVID-19-unrelated ARDS. In order to shed light on the potential mechanisms underlying the COVID-19 infection, we conducted this proof-of-concept study using single-cell V(D)J and gene expression sequencing of B cells to examine the dynamic changes in the transcriptomic BCR repertoire present in patients with COVID-19 at various stages. We compared a recovered and a deceased COVID-19 patient supported by ECMO with one COVID-19-recovered patient who did not receive ECMO treatment and one healthy subject who had never been infected previously. Our analysis revealed a downregulation of FXYD, HLA-DRB1, and RPS20 in memory B cells; MTATP8 and HLA-DQA1 in naïve cells; RPS4Y1 in activated B cells; and IGHV3-73 in plasma cells in COVID-19 patients. We further described an increased ratio of IgA + IgG to IgD + IgM, suggestive of an intensive memory antibody response, in the COVID ECMO D patient. Finally, we assessed a V(D)J rearrangement of heavy chain IgHV3, IGHJ4, and IGHD3/IGHD2 families in COVID-19 patients regardless of the severity of the disease

    Indicaxanthin from Opuntia Ficus Indica (L. Mill) impairs melanoma cell proliferation, invasiveness, and tumor progression

    Get PDF
    Background: A strong, reciprocal crosstalk between inflammation and melanoma has rigorously been demonstrated in recent years, showing how crucial is a pro-inflammatory microenvironment to drive therapy resistance and metastasis. Purpose: We investigated on the effects of Indicaxanthin, a novel, anti-inflammatory and bioavailable phytochemical from Opuntia Ficus Indica fruits, against human melanoma both in vitro and in vivo. Study Design and Methods: The effects of indicaxanthin were evaluated against the proliferation of A375 human melanoma cell line and in a mice model of cutaneous melanoma. Cell proliferation was assessed by MTT assay, apoptosis by Annexin V-Fluorescein Isothiocyanate/Propidium Iodide staining, protein expression by western blotting, melanoma lesions were subcutaneously injected in mice with B16/F10 cells, chemokine release was quantified by ELISA. Results: Data herein presented demonstrate that indicaxanthin effectively inhibits the proliferation of the highly metastatic and invasive A375 cells as shown by growth inhibition, apoptosis induction and cell invasiveness reduction. More interestingly, in vitro data were paralleled by those in vivo showing that indicaxanthin significantly reduced tumor development when orally administered to mice. The results of our study also clarify the molecular mechanisms underlying the antiproliferative effect of indicaxanthin, individuating the inhibition of NF-κB pathway as predominant. Conclusion: In conclusion, we demonstrated that indicaxanthin represents a novel phytochemical able to significantly inhibit human melanoma cell proliferation in vitro and to impair tumor progression in vivo. When considering the resistance of melanoma to the current therapeutical approach and the very limited number of phytochemicals able to partially counteract it, our findings may be of interest to explore indicaxanthin potential in further and more complex melanoma studies in combo therapy, i.e. where different check points of melanoma development are targeted

    ATTIVITA’ CITOTOSSICA DI COMPLESSI ORGANOSTAGNO(IV) CON TRIAZOLOPIRIMIDINE CONTENENTI ATOMI DI OSSIGENO ESOCICLICO

    No full text
    Le triazolopirimidine sono leganti eterociclici di crescente interesse. I composti di organostagno(IV) sono caratterizzati dalla presenza di un atomo di stagno (Sn) legato covalentemente ad uno o più sostituenti organici. In questo studio1 sono stati sintetizzati: Me3Sn(5tpO)(1); n-Bu3Sn(5tpO)(2); Me3Sn(mtpO)(3); n-Bu3Sn(mtpO)(4); n-Bu3Sn(HtpO2)(5); Ph3Sn(HtpO2)(6) e la loro citotossicità valutata su tre differenti linee cellulari tumorali umane: HCT-116 (carcinoma del colon retto), HepG2 (epatocarcinoma) e MCF-7 (carcinoma mammario). I complessi 2, 4, 5 e 6 hanno mostrato attività citotossica di 1-2 ordini di grandezza superiore al cis-platino, sulle 3 linee cellulari tumorali. Il meccanismo di morte cellulare è stato quindi indagato sulle cellule HCT-116, le più sensibili all’azione dei composti. Tutti hanno mostrato: a) attività proapoptotica, come evidente dall’esternalizzazione della fosfatidilserina; b) meccanismo di esecuzione intrinseco come evidente dalla caduta di potenziale mitocondriale e dall’incremento di specie reattive dell’ossigeno (ROS); c) i complessi 2 e 4 pur avendo leganti differenti causano un blocco del ciclo in fase G0/G1 mentre il complesso 6 blocca le cellulle in fase G2/M. Infine l’indice di selettività calcolato su cellule intestinali normal-like indica che il complesso 6 è il più specifico contro le cellule tumorali. I complessi 1 e 2 sono stati sottoposti ad uno studio strutturale mediante raggi X per correlarne la struttura all'attività biologica

    Cytotoxic Activity of Organotin(IV) Derivatives with Triazolopyrimidine Containing Exocyclic Oxygen Atoms

    No full text
    : In this study cytotoxicity of organotin(IV) compounds with 1,2,4-triazolo[1,5-a]pyrimidines, Me3Sn(5tpO) (1), n-Bu3Sn(5tpO) (2), Me3Sn(mtpO) (3), n-Bu3Sn(mtpO) (4), n-Bu3Sn(HtpO2) (5), Ph3Sn(HtpO2) (6) where 5HtpO = 4,5-dihydro-5-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, HmtpO = 4,7-dihydro-5-methyl-7-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, and H2tpO2 = 4,5,6,7-tetrahydro-5,7- dioxo-[1,2,4]triazolo-[1,5-a]-pyrimidine, was assessed on three different human tumor cell lines: HCT-116 (colorectal carcinoma), HepG2 (hepatocarcinoma) and MCF-7 (breast cancer). While 1 and 3 were inactive, compounds 2, 4, 5 and 6 inhibited the growth of the three tumor cell lines with IC50 values in the submicromolar range and showed high selectivity indexes towards the tumor cells (SI > 90). The mechanism of cell death triggered by the organotin(IV) derivatives, investigated on HCT-116 cells, was apoptotic, as evident from the externalization of phosphatidylserine to the cell surface, and occurred via the intrinsic pathway with fall of mitochondrial inner membrane potential and production of reactive oxygen species. While compound 6 arrested the cell progression in the G2/M cell cycle phase and increased p53 and p21 levels, compounds 2, 4 and 5 blocked cell duplication in the G1 phase without affecting the expression of either of the two tumor suppressor proteins. Compounds 1 and 2 were also investigated using single crystal X-ray diffraction and found to be, in both cases, coordination polymers forming 1 D chains based on metal-ligand interactions. Interestingly, for n-Bu3Sn(5tpO)(2) H-bonding interactions between 5tpO 12 ligands belonging to adjacent chains were also detected that resemble the \u201cbase-pairing\u201d assembly and could be responsible for the higher biological activity compared to compound 1. In addition, they are the first example of bidentate N(3), O coordination for the 5HtpO ligand on two adjacent metal atoms

    Human Amnion-Derived Mesenchymal Stromal/Stem Cells Pre-Conditioning Inhibits Inflammation and Apoptosis of Immune and Parenchymal Cells in an In Vitro Model of Liver Ischemia/Reperfusion

    No full text
    Ischemia/reperfusion injury (IRI) represents one of the leading causes of primary non-function acute liver transplantation failure. IRI, generated by an interruption of organ blood flow and the subsequent restoration upon transplant, i.e., reperfusion, generates the activation of an inflammatory cascade from the resident Kupffer cells, leading first to neutrophils recruitment and second to apoptosis of the parenchyma. Recently, human mesenchymal stromal/stem cells (hMSCs) and derivatives have been implemented for reducing the damage induced by IRI. Interestingly, sparse data in the literature have described the use of human amnion-derived MSCs (hAMSCs) and, more importantly, no evidence regarding hMSCs priming on liver IRI have been described yet. Thus, our study focused on the definition of an in vitro model of liver IRI to test the effect of primed hAMSCs to reduce IRI damage on immune and hepatic cells. We found that the IFNγ pre-treatment and 3D culture of hAMSCs strongly reduced inflammation induced by M1-differentiated macrophages. Furthermore, primed hAMSCs significantly inhibited parenchymal apoptosis at early timepoints of reperfusion by blocking the activation of caspase 3/7. All together, these data demonstrate that hAMSCs priming significantly overcomes IRI effects in vitro by engaging the possibility of defining the molecular pathways involved in this process
    corecore