8 research outputs found

    Thermodynamic properties of the Dicke model in the strong-coupling regime

    Full text link
    We discuss the problem of a N two-level systems interacting with a single radiation mode in the strong-coupling regime. The thermodynamic properties of Dicke model are analyzed developing a perturbative expansion of the partition function in the high-temperature limit and we use this method to investigate the connections between the Dicke and the collective one-dimensional Ising modelComment: 7 pages, accepted for publication in EPJ

    Perturbative study of the Kitaev model with spontaneous time-reversal symmetry breaking

    Full text link
    We analyze the Kitaev model on the triangle-honeycomb lattice whose ground state has recently been shown to be a chiral spin liquid. We consider two perturbative expansions: the isolated-dimer limit containing Abelian anyons and the isolated-triangle limit. In the former case, we derive the low-energy effective theory and discuss the role played by multi-plaquette interactions. In this phase, we also compute the spin-spin correlation functions for any vortex configuration. In the isolated-triangle limit, we show that the effective theory is, at lowest nontrivial order, the Kitaev honeycomb model at the isotropic point. We also compute the next-order correction which opens a gap and yields non-Abelian anyons.Comment: 7 pages, 4 figures, published versio

    Entanglement sharing in E⊗ϔE\otimes\epsilon Jahn-Teller model in the presence of a magnetic field

    Full text link
    We discuss the ground state entanglement of the E⊗ϔE\otimes\epsilon Jahn-Teller model in the presence of a strong transverse magnetic field as a function of the vibronic coupling strength. A complete characterization is given of the phenomenon of entanglement sharing in a system composed by a qubit coupled to two bosonic modes. Using the residual II-tangle, we find that three-partite entanglement is significantly present in the system in the parameter region near the bifurcation point of the corresponding classical model

    Entanglement of a qubit coupled to a resonator in the adiabatic regime

    Full text link
    We discuss the ground state entanglement of a bi-partite system, composed by a qubit strongly interacting with an oscillator mode, as a function of the coupling strenght, the transition frequency and the level asymmetry of the qubit. This is done in the adiabatic regime in which the time evolution of the qubit is much faster than the oscillator one. Within the adiabatic approximation, we obtain a complete characterization of the ground state properties of the system and of its entanglement content.Comment: 6 pages, 7 figure

    Nuclear halo and the coherent nuclear interaction

    Full text link
    The unusual structure of Li11, the first halo nucleus found, is analyzed by the Preparata model of nuclear structure. By applying Coherent Nucleus Theory, we obtain an interaction potential for the halo-neutrons that rightly reproduces the fundamental state of the system.Comment: 9 pages Submitted to International Journal of Modern Physics E (IJMPE

    Emergent Insulator-Metal Transition with Tunable Optical and Electrical Gap in Thin Films of a Molecular Conducting Composite

    No full text
    Composites exhibit unique synergistic properties emerging when components with different properties are combined. The tuning of the energy bandgap in the electronic structure of the material allows designing tailor-made systems with desirable mechanical, electrical, optical, and/or thermal properties. Here, we study an emergent insulator-metal transition at room temperature in bilayered (BL) thin-films comprised of polycarbonate/molecular-metal composites. Temperature-dependent resistance measurements allow monitoring of the electrical bandgap, which is in agreement with the optical bandgap extracted by optical absorption spectroscopy. The semiconductor-like properties of BL films, made with bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF or ET) α-ET2I3 (nano)microcrystals as two-dimensional molecular conductor on one side and insulator polycarbonate as a second ingredient, are attributed to an emergent phenomenon equivalent to the transition from an insulator to a metal. This made it possible to obtain semiconducting BL films with tunable electrical/optical bandgaps ranging from 0 to 2.9 eV. A remarkable aspect is the similarity close to room temperature of the thermal and mechanical properties of both composite components, making these materials ideal candidates to fabricate flexible and soft sensors for stress, pressure, and temperature aiming at applications in wearable human health care and bioelectronics.This work was funded by the Spanish Ministry with Project GENESIS PID2019-111682RB-I00 and the Generalitat de Catalunya (Grant 2017-SGR-918). R.P. acknowledges support from the RamĂłn y Cajal Fellowship (Ref. RyC2019-028474-I). J.L. is enrolled in the UAB Materials Science Ph.D. program and acknowledges his Chinese Council Ph.D. fellowship. R.L.Z. and N.A.-A. thank the European Research Council (ERC) under the European Union’s Horizon 2020 R&D Programme (Grant ERC-724981). We thank Dr. Tommaso Salzillo and Dr. Roxana Vlad for fruitful discussions. All the authors acknowledge the financial support through the “Severo Ochoa” program for Centers of Excellence in R&D (Grant CEX2019-000917-S).With funding from the Spanish government through the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000917-S).Peer reviewe
    corecore