15 research outputs found

    Structure and dynamics of interphase chromosomes

    Get PDF
    During interphase chromosomes decondense, but fluorescent in situ hybridization experiments reveal the existence of distinct territories occupied by individual chromosomes inside the nuclei of most eukaryotic cells. We use computer simulations to show that the existence and stability of territories is a kinetic effect that can be explained without invoking an underlying nuclear scaffold or protein-mediated interactions between DNA sequences. In particular, we show that the experimentally observed territory shapes and spatial distances between marked chromosome sites for human, Drosophila, and budding yeast chromosomes can be reproduced by a parameter-free minimal model of decondensing chromosomes. Our results suggest that the observed interphase structure and dynamics are due to generic polymer effects: confined Brownian motion conserving the local topological state of long chain molecules and segregation of mutually unentangled chains due to topological constraint

    Physical Links: Defining and detecting inter-chain entanglement

    Get PDF
    Fluctuating filaments, from densely-packed biopolymers to defect lines in structured fluids, are prone to become interlaced and form intricate architectures. Understanding the ensuing mechanical and relaxation properties depends critically on being able to capture such entanglement in quantitative terms. So far, this has been an elusive challenge. Here we introduce the first general characterization of non-ephemeral forms of entanglement in linear curves by introducing novel descriptors that extend topological measures of linking from close to open curves. We thus establish the concept of physical links. This general method is applied to diverse contexts: equilibrated ring polymers, mechanically-stretched links and concentrated solutions of linear chains. The abundance, complexity and space distribution of their physical links gives access to a whole new layer of understanding of such systems and open new perspectives for others, such as reconnection events and topological simplification in dissipative fields and defect lines

    Structure and dynamics of ring polymers: entanglement effects because of solution density and ring topology

    Full text link
    The effects of entanglement in solutions and melts of unknotted ring polymers have been addressed by several theoretical and numerical studies. The system properties have been typically profiled as a function of ring contour length at fixed solution density. Here, we use a different approach to investigate numerically the equilibrium and kinetic properties of solutions of model ring polymers. Specifically, the ring contour length is maintained fixed, while the interplay of inter- and intra-chain entanglement is modulated by varying both solution density (from infinite dilution up to \approx 40 % volume occupancy) and ring topology (by considering unknotted and trefoil-knotted chains). The equilibrium metric properties of rings with either topology are found to be only weakly affected by the increase of solution density. Even at the highest density, the average ring size, shape anisotropy and length of the knotted region differ at most by 40% from those of isolated rings. Conversely, kinetics are strongly affected by the degree of inter-chain entanglement: for both unknots and trefoils the characteristic times of ring size relaxation, reorientation and diffusion change by one order of magnitude across the considered range of concentrations. Yet, significant topology-dependent differences in kinetics are observed only for very dilute solutions (much below the ring overlap threshold). For knotted rings, the slowest kinetic process is found to correspond to the diffusion of the knotted region along the ring backbone.Comment: 17 pages, 11 figure

    Chromatin and epigenetics: current biophysical views

    Get PDF
    Recent advances in high-throughput sequencing experiments and their theoretical descriptions have determined fast dynamics of the "chromatin and epigenetics" field, with new concepts appearing at high rate. This field includes but is not limited to the study of DNA-protein-RNA interactions, chromatin packing properties at different scales, regulation of gene expression and protein trafficking in the cell nucleus, binding site search in the crowded chromatin environment and modulation of physical interactions by covalent chemical modifications of the binding partners. The current special issue does not pretend for the full coverage of the field, but it rather aims to capture its development and provide a snapshot of the most recent concepts and approaches. Eighteen open-access articles comprising this issue provide a delicate balance between current theoretical and experimental biophysical approaches to uncover chromatin structure and understand epigenetic regulation, allowing free flow of new ideas and preliminary results

    Computer simulations of randomly branching polymers: annealed versus quenched branching structures

    No full text
    We present computer simulations of three systems of randomly branching polymers in d = 3 dimensions: ideal trees and self-avoiding trees with annealed and quenched connectivities. In all cases, we performed a detailed analysis of trees connectivities, spatial conformations and statistical properties of linear paths on trees, and compare the results to the corresponding predictions of Flory theory. We confirm that, overall, the theory predicts correctly that trees with quenched ideal connectivity exhibit less overall swelling in good solvent than corresponding trees with annealed connectivity even though they are more strongly stretched on the path level. At the same time, we emphasize the inadequacy of the Flory theory in predicting the behaviour of other, and equally relevant, observables like contact probabilities between tree nodes. We show, then, that contact probabilities can be aptly characterized by introducing a novel critical exponent, theta(path), which accounts for how they decay as a function of the node-to-node path distance on the tree

    Looping probabilities in model interphase chromosomes

    No full text
    Fluorescence in-situ hybridization (FISH) and chromosome conformation capture (3C) are two powerful techniques for investigating the three-dimensional organization of the genome in interphase nuclei. The use of these techniques provides complementary information on average spatial distances (FISH) and contact probabilities (3C) for specific genomic sites. To infer the structure of the chromatin fiber or to distinguish functional interactions from random colocalization, it is useful to compare experimental data to predictions from statistical fiber models. The current estimates of the fiber stiffness derived from FISH and 3C differ by a factor of 5. They are based on the wormlike chain model and a heuristic modification of the Shimada-Yamakawa theory of looping for unkinkable, unconstrained, zero-diameter filaments. Here, we provide an extended theoretical and computational framework to explain the currently available experimental data for various species on the basis of a unique, minimal model of decondensing chromosomes: a kinkable, topologically constraint, semiflexible polymer with the (FISH) Kuhn length of I(K) = 300 nm, 10 kinks per Mbp, and a contact distance of 45 nm. In particular: 1), we reconsider looping of finite-diameter filaments on the basis of an analytical approximation (novel, to our knowledge) of the wormlike chain radial density and show that unphysically large contact radii would be required to explain the 3C data based on the FISH estimate of the fiber stiffness; 2), we demonstrate that the observed interaction frequencies at short genomic lengths can be explained by the presence of a low concentration of curvature defects (kinks); and 3), we show that the most recent experimental 3C data for human chromosomes are in quantitative agreement with interaction frequencies extracted from our simulations of topologically confined model chromosomes

    Density effects in entangled solutions of linear and ring polymers

    No full text
    In this paper, we employ molecular dynamics computer simulations to study and compare the statics and dynamics of linear and circular (ring) polymer chains in entangled solutions of different densities. While we confirm that linear chain conformations obey Gaussian statistics at all densities, rings tend to crumple becoming more and more compact as the density increases. Conversely, contact frequencies between chain monomers are shown to depend on solution density for both chain topologies. The relaxation of chains at equilibrium is also shown to depend on topology, with ring polymers relaxing faster than their linear counterparts. Finally, we discuss the local viscoelastic properties of the solutions by showing that the diffusion of dispersed colloid-like particles is markedly faster in the rings case

    The radial distribution function of worm-like chains

    No full text
    Thermal conformations of semiflexible macromolecules are generically described by the worm-like chain model. The end-to-end distance distribution, a fundamental quantity of the model, is not yet known in closed form. We provide a solution to the practical problem of choosing an appropriate approximation. First, a comprehensive review of existing approximations and exact limiting results is given. We then propose an explicit expression which interpolates between all relevant limiting cases. We show that it accurately reproduces, at no computational cost, high-precision Monte Carlo data, covering a wide range from stiff to flexible chains and from looped to fully stretched configurations. Using this result we quantify the enhancement of short worm-like loop formation by (protein) bridges
    corecore